DOI QR코드

DOI QR Code

Robust Adaptive Fuzzy Tracking Control Using a FBFN for a Mobile Robot with Actuator Dynamics

구동기 동역학을 가지는 이동 로봇에 대한 FBFN을 이용한 강인 적응 퍼지 추종 제어

  • 신진호 (동의대학교 메카트로닉스공학과) ;
  • 김원호 (동의대학교 메카트로닉스공학과) ;
  • 이문노 (동의대학교 컴퓨터공학과)
  • Received : 2009.10.30
  • Accepted : 2010.01.11
  • Published : 2010.04.01

Abstract

This paper proposes a robust adaptive fuzzy tracking control scheme for a nonholonomic mobile robot with external disturbances as well as parameter uncertainties in the robot kinematics, the robot dynamics, and the actuator dynamics. In modeling a mobile robot, the actuator dynamics is integrated with the robot kinematics and dynamics so that the actuator input voltages are the control inputs. The presented controller is designed based on a FBFN (Fuzzy Basis Function Network) to approximate an unknown nonlinear dynamic function with the uncertainties, and a robust adaptive input to overcome the uncertainties. When the controller is designed, the different parameters for two actuator models in the actuator dynamics are taken into account. The proposed control scheme does not require the kinematic and dynamic parameters of the robot and actuators accurately. It can also alleviate the input chattering and overcome the unknown friction force. The stability of the closed-loop control system including the kinematic control system is guaranteed by using the Lyapunov stability theory and the presented adaptive laws. The validity and robustness of the proposed control scheme are shown through a computer simulation.

Keywords

Acknowledgement

Supported by : 동의대학교

References

  1. Y. Kanayama, Y. Kimura, F. Miyazaki, and T. Noguchi, "A stable tracking control method for an autonomous mobile robot," Proc. of the IEEE Int. Conf. on Robotics and Automation, USA, vol. 1, pp. 384-389, 1990. https://doi.org/10.1109/ROBOT.1990.126006
  2. G. Yuan, S. X. Yang, and G. S. Mittal, "Tracking control of a mobile robot using a neural dynamics based approach," Proc. of the IEEE Int. Conf. on Robotics and Automation, Japan, vol. 1, pp. 163-168, 2001.
  3. D. H. Kim and J. H. Oh, "Tracking control of a two-wheeled mobile robot using input-output linearization," Control Engineering Practice, vol. 7, no. 3, pp. 369-373, 1999. https://doi.org/10.1016/S0967-0661(98)00184-1
  4. Y. Hu and S. X. Yang, "A fuzzy neural dynamics based tracking controller for a nonholonomic mobile robot," Proc. of the IEEE/ASME Int. Conf. Advanced Intelligent Mechatronics, vol. 1, pp. 205-210, 2003.
  5. Z.-P. Jiang and H. Nijmeijer, "Tracking control of a mobile robots: a case study in backstepping," Automatica, vol. 33, no. 7, pp. 1393-1399, 1997. https://doi.org/10.1016/S0005-1098(97)00055-1
  6. R. Fierro and F. L. Lewis, "Control of a nonholonomic mobile robot: backstepping kinematics into dynamics," Proc. of the IEEE Int. Conf. on Decision and Control, USA, vol. 4, pp. 3805-3810, 1995.
  7. M. S. Kim, J. H. Shin, S. G. Hong, and J. J. Lee, "Designing a robust adaptive dynamic controller for nonholonomic mobile robots under modeling uncertainty and disturbances," Mechatronics, vol. 13, no. 5, pp. 507-519, June 2003. https://doi.org/10.1016/S0957-4158(02)00002-8
  8. 박봉석, 유성진, 최윤호, 박진배, “새로운 슬라이딩 표면에 기반한 비홀로노믹 이동 로봇의 추종 제어,” 제어. 로봇. 시스템학회 논문지, 제14권 제8호, pp. 842-847, 2008.
  9. 김승우, 서기성, 조영완, “모델참조 적응 퍼지 제어기를 이용한 휠베이스 이동 로봇의 궤적 추적 제어,” 제어. 로봇. 시스템학회 논문지, 제15권 제7호, pp.711-179, 2009.
  10. R. Fierro and F. L. Lewis, "Control of a nonholonomic mobile robot using neural networks," IEEE Trans. Neural Networks, vol. 9, no. 4, pp. 589-600, 1998. https://doi.org/10.1109/72.701173
  11. T. Fukao, H. Nakagawa, and N. Adachi, "Adaptive tracking control of a nonholonomic mobile robots," IEEE Trans. on Robotics and Automation, vol. 16, no. 5, pp. 609-615, 2000. https://doi.org/10.1109/70.880812
  12. S. Yu. S. Liu. and H. Xu. "Adaptive fuzzy trajectory tracking control of uncertain nonholonomic mobile robots," Proc. of the IEEE Inf. Conf. on Industrial Informatics, Korea, pp. 481-486, 2008.
  13. S. LeBel and L. Rodrigues, "Path following of a wheeled mobile robot combining piecewise-affine synthesis and backstepping approaches," Proc. of the American Control Conference, USA, pp. 4518-4523, 2007.
  14. N. A. Martins, D. W. Bertol, D. R. De Pieri, and E. B. Castelan,"Neural dynamic control of a nonholonomic mobile robot incorporating the actuator dynamics," Proc. of the lnt. Conf. on Computational Intelligence for Modelling Control & Automation, pp. 563-568, 2008.
  15. L. X. Wang and J. M. Mendel, "Fuzzy basis functions, universalapproximation, and orthogonal least-squares learning," IEEE Trans. Neural Networks, vol. 3, no. 5, pp. 807-814, 1992. https://doi.org/10.1109/72.159070
  16. L. X. Wang, "Fuzzy systems are universal approximators," Proc. of the IEEE Int. Conf. on Fuzzy Systems, USA, pp. 1163-1170, 1992. https://doi.org/10.1109/FUZZY.1992.258721
  17. L. X. Wang, "Stable adaptive fuzzy control of nonlinear system," IEEE Trans. Fuzzy Systems, vol. 1, no. 2, pp. 146-155, 1993. https://doi.org/10.1109/91.227383
  18. T. Das and I. N. Kar, "Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots," IEEE Trans. Control System Technology, vol. 14, no. 3, pp. 501-510, 2006. https://doi.org/10.1109/TCST.2006.872536
  19. N. H. Giap, J. H. Shin, and W. H. Kim, "Adaptive robust fuzzy control for path tracking of a wheeled mobile robot," Artificial Life and Robotics, vol. 13, no. 1, pp.134-138, 2008. https://doi.org/10.1007/s10015-008-0519-3