Abstract
In recent years, wind energy has been the world's fastest growing source of energy. This paper describes the structural design and analysis of composite blade for 2 kW-level HAWT (horizontal axis wind turbine). The aerodynamic design and force, which are required to design and analyze a composite blade structurally, are calculated through BEMT(blade element momentum theory) implemented in public code PROPID. To obtain the equivalent material properties of filament wound composite blades, the rule-of-mixture is applied using the basic material properties of fiber and matrix, respectively. Lay-up sequence, ply thickness and ply angle are designed to satisfy the loading conditions. Structural analysis by using commercial software ABAQUS is performed to compute the displacement and strength ratio of filament wound composite blades.