DOI QR코드

DOI QR Code

Suspended Stripline Filter Design Using a New Ultra-Wideband Microstrip-to-Suspended Stripline Transition

초광대역 마이크로스트립 선로와 Suspended 스트립 선로 간의 전이 구조를 이용한 Suspended 스트립 선로 여파기 설계

  • Kim, Young-Gon (School of Electrical Engineering and Computer Science, Kyungpook National University) ;
  • Song, Sun-Young (School of Electrical Engineering and Computer Science, Kyungpook National University) ;
  • Kim, In-Bok (School of Electrical Engineering and Computer Science, Kyungpook National University) ;
  • Kim, Kang-Wook (School of Electrical Engineering and Computer Science, Kyungpook National University)
  • 김영곤 (경북대학교 전자전기컴퓨터학부) ;
  • 송선영 (경북대학교 전자전기컴퓨터학부) ;
  • 김인복 (경북대학교 전자전기컴퓨터학부) ;
  • 김강욱 (경북대학교 전자전기컴퓨터학부)
  • Accepted : 2010.01.29
  • Published : 2010.03.31

Abstract

In this paper, a novel ultra-wideband microstrip-to-suspended stripline(SSL) transition is proposed, and SSL filters with low-loss and high selectivity have been realized using this transition. Since the proposed transition has low-loss and wide bandwidth characteristic, the design procedure of SSL filters become simplified. Additionally, the designed filters do not require extra time-consuming tuning. As design examples, SSL low-pass and high-pass filters have been implemented, and a implemented bandpass filter with connection of the low and high-pass filters performs 2.3~10.5 GHz bandwidth with less than 1.2 dB insertion loss and high selectivity.

본 논문에서는 새로운 초광대역 마이크로스트립 선로-suspended 스트립 선로(SSL) 전이 구조를 제안하였고, 이 전이 구조를 이용하여 저손실의 높은 선택도를 갖는 여파기를 구현할 수 있음을 보여주었다. 제안된 전이구조는 광대역의 특성을 가지고 있으므로, SSL 여파기의 설계를 간단하게 할 수 있게 하고, 구현 시 별도의 튜닝이 필요 없음을 보여주었다. SSL 여파기 구현의 예로서 SSL 저역 및 고역 통과 여파기를 각각 구현하고, 이를 연결함으로써 2.3~10.5 GHz 대역에서 1.2 dB 이하의 적은 삽입 손실을 가지고, 또한 고선택도를 가지는 대역 통과 여파기를 구현한 것을 보여주고 있다.

Keywords

References

  1. J. D. Rhodes, "Suspended substrates provide alternatives to coax", Microwave Syst. News, vol. 9, pp. 134-143, Aug. 1979.
  2. J. D. Rhodes, J. E. Dean, "MIC broad-band filters and contiguous diplexers", in 9th Eur. Microwave Conf. Dig., pp. 407-411, 1979.
  3. C. I. Mobbs, J. D. Rhodes, "A generalized Chebyshev suspended substrate stripline bandpass filter", IEEE Trans. Microw. Theory Tech., vol. MTT-35, no. 5, pp. 397-402, May 1983. https://doi.org/10.1109/TMTT.1983.1131510
  4. W. Schwab, F. Bogelsack, and W. Menzel, "Multilayer suspended stripline and coplanar line filters", IEEE Trans. Microw. Theory Tech., vol. 46, no. 7, pp. 1403-1407, Jul. 1994. https://doi.org/10.1109/22.299736
  5. Leo G. Maloratsky, Rockwell Collins, and F. L. Melbourne, "Reviewing the basics of suspended striplines", IEEE Microw. Journal, pp. 82-98, Oct. 2002.
  6. W. Menzel, "Miniaturized suspended stripline filters for integration into extended circuits", IEEE Microwave Conference 36th European, pp. 909-912, Sep. 2006. https://doi.org/10.1109/EUMC.2006.281068
  7. Y. G. Kim, K. W. Kim, and Y. K. Cho, "An ultra-wideband microstrip-to-CPW transition", IEEE Int'l Symp. Microwave, pp. 1079-1082, Jun. 2008. https://doi.org/10.1109/MWSYM.2008.4633243
  8. W. Menzel, "Quasi-lumped suspended stripline filters and diplexers", IEEE Trans. Microw. Theory Tech., vol. 53, no. 10, pp. 3230-3237, Oct. 2005. https://doi.org/10.1109/TMTT.2005.855139
  9. D. Packiaraj, M. Ramesh, and A. T. Kalghatgi, "Design of a tri-section folded SIR filter", IEEE Microwave and Wireless Componens Letters, vol. 16, no. 5, pp. 317-319, May 2006. https://doi.org/10.1109/LMWC.2006.873459