DOI QR코드

DOI QR Code

Analysis of Weed Vegetation in Vicinity of Abandoned Mines

폐광산 주변에 발생하는 잡초 식생의 특징

  • Hong, Sun-Hee (Environmental Science & Ecological Engineering, Korea University) ;
  • Lee, Yong-Ho (Environmental Science & Ecological Engineering, Korea University) ;
  • Na, Chae-Sun (Environmental Science & Ecological Engineering, Korea University) ;
  • Kim, Dae-Yeon (Environmental Science & Ecological Engineering, Korea University) ;
  • Kim, Jeong-Gyu (Environmental Science & Ecological Engineering, Korea University) ;
  • Kang, Byeung-Hoa (Environmental Science & Ecological Engineering, Korea University) ;
  • Shim, Sang-In (Dept. of Agronomy, College of Agriculture & Life Sciences, Gyeongsang National University)
  • 홍선희 (고려대학교 생명과학대학) ;
  • 이용호 (고려대학교 생명과학대학) ;
  • 나채선 (고려대학교 생명과학대학) ;
  • 김대연 (고려대학교 생명과학대학) ;
  • 김정규 (고려대학교 생명과학대학) ;
  • 강병화 (고려대학교 생명과학대학) ;
  • 심상인 (경상대학교 농업생명과학대학 농학)
  • Received : 2010.01.22
  • Accepted : 2010.03.15
  • Published : 2010.03.31

Abstract

Field study to find appropriate species for phytoremediation and phytomonitoring with higher plants was carried out at four abandoned metalliferous mines. In order to know the tolerant degree of plant resources collected at heavy metal polluted sites, soil and plants were sampled at same sites and metal concentrations were determined. Most serious heavy metal polluted in the sites was As that showed range from 29.1 to 1372.2 mg $kg^{-1}$ in investigated area. The dominant species were Oenothera biennis, Commelina communis, Persicaria senticosa, Conyza annuus, Artemisia princeps, and Erigeron canadensis. These species were predominant species that were proliferated in any survey area. Compared with other sites, vegetational characteristics of Dal-Seong, a mine site abandoned early in 1973, showed higher diversity index and lower dominance index. Distributions of weed species according to life cycle indicated that the proportions of perennial plants were lowered in every investigated site. Although the polluted areas were distant from each other, similarity indices among these vegetation were relatively similar. These results means the vegetations of abandoned mine areas were beginning stage of vegetational succession, and the vegetations were adversely affected by disturbance with heavy-metals and lack of water in soil.

폐광산 주변의 토양 중금속 오염과 이 지역의 식생조사를 실시한 결과 As의 오염이 가장 심각하게 나타났다. 조사된 광산에서 모두 나타난 초종은 달맞이꽃, 닭의장풀, 며느리밑씻게, 개망초, 망초 등 5개 초종이며, 이들은 식생천이의 초기종으로, 중요치(important value)는 달맞이꽃이 가장 높았다. 달성광산은 종풍부도 및 종다양성이 가장 높았으며, 오염의 정도와는 별개로 작토층이 잘 발달한 것으로 밝혀졌다. 조사 지점 사이의 리차가 큼에도 불구하고 군집유사도는 비교적 높은 것으로 밝혀졌으며 이는 교란에 의한 천이 초기종들의 우점이 강하기 때문으로 생각된다.

Keywords

References

  1. 박용하. 1994. 휴폐광된 금속광산 지역의 오염 관리 대책. 한국환경기술개발원. KETRI/1994/RE-14, 588 p.
  2. 조성진, 박천서, 엄대익, 2002. 사정 토양학, 향문사.
  3. 최휘문, 조순행, 하동윤, 이상은. 2004. Chemical Extraction을 이용한 폐광산 광미내 비소 용출특성 조사 및 제거효율 평가. 대한환경공학회지 26:111-118.
  4. 환경부. 2005. 토양오염시험공정법.
  5. 환경부. 2005. 폐금속광산 토양오염실태조사(156개 광산 종합).
  6. Banerjee. D. K., and M. R. Gray. 1997. Analysis of hydrocarbon contaminated soil by thermal extraction gas chromatography. Environ. Sci. Technol. 31:646-650. https://doi.org/10.1021/es960063a
  7. Bannister P. 1966. The use of subjective estimates of cover abundance as the basis for ordination. J. Ecol. 54:665-74. https://doi.org/10.2307/2257809
  8. Bissen, M., and F. H. Frimmel, 2003. Arsenic a review. Pan I : Occurrence, toxicity, speciation, mobility. Acta Hydrochim. Hydrobiol. 31:9-18. https://doi.org/10.1002/aheh.200390025
  9. Bolton, H., D. C. Girvin, A. E. Plymale, S. D. Harvey and D. J. Workman. 1996 Degradation of metal-nitrilotriacetate complexes by chelatobacter-heinzii. Environ. Sci. Technol. 30:931-938. https://doi.org/10.1021/es950397k
  10. Cunningham, S. D., and D. W. Ow. 1996. Promises and prospects of phytoremediation. Plant Physiol., 110:715-719.
  11. Curtis, J. T., and R. P. Mclnotosh. 1951. An upland forest continuum in the prairie forest noarder region of Wisconsin. Ecology 32:476-496. https://doi.org/10.2307/1931725
  12. Das, D. 1996. Arsenic in ground water in six districts of West Bengal, India. Environ. Geochem. Health. 18:5-15. https://doi.org/10.1007/BF01757214
  13. Fann, D., D. Pal, E. Lory, L. Karr, A. P. Mathews and P. A. Price. 1998. Hot air vapor extraction for remediation of petrolium contaminated sites. Proceeding of the Eighth International Offshore and Polar Engineering Conference Canada. 313-321.
  14. Hamel, S. C., B. Buckley and P. J. Lioy. 1998. Bioaccessibility of metals in soils for different liquid to solid ratios in synthetic gastric fluid, Environ. Sci. Technol. 32:358-362. https://doi.org/10.1021/es9701422
  15. Kim D. Y. 2007. Phytoremediation of Arsenic-Contaminated Soils by Using Evening primrose (Oenothera odorata). Ph.D dissertation. Korea University Seoul, Korea.
  16. Margalef, D. R. 1968. Perspectives in ecological theory. The University of Chicago Press, Chicago, III.
  17. Montero, G. A., K. B. Schnelle, Jr. and T. D. Giorgio. 1997. Supercritical fluid extraction of contaminated soil. J. Environ. Sci. Health. A32:481-495.
  18. Pielou, E. C. 1966. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13:131-144. https://doi.org/10.1016/0022-5193(66)90013-0
  19. Ravenscroft, P., J. M. McArthur and B. A. Hoque. 2001. Geochemical and palaeohydrological controls on pollution of groundwater by Arsenic. In : Arsenic Exposure and Health Effects IV. W.R. Chappell, C.O. Abernathy & R. Calderon (Eds), Elsevier Science Ltd. Oxford. pp. 53-78.
  20. Ruby M. V., R. Schoof. W. Brattin, M. Goldade, G. Post, M. Harnois, D. E. Mosby, S. W. Casteel, W. Berti, M. Carpenter, D. Edwards, D. Cragin and W. Chappell. 1999. Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environ. Sci. Technol. 33:3697-3705. https://doi.org/10.1021/es990479z
  21. Shannon, C. E., and W. Weaver. 1949. The mathe-matical theory of communication. University of Illinois Press.
  22. Simpson, E. H. 1949. Measurement of diversity. Nature 163:688. https://doi.org/10.1038/163688a0
  23. Sorensen T. 1948. A method of establishing groups of equal amplitude in plant society based on similarity of species content. Biologiske Skrifter 5:1-34.
  24. Yang J. K., M. O. Barnett, P. M. Jardine, N. T. Basta and S. W. Casteel. 2002. Adsorption, sequestration, and bioaccessibility of As (V) in soils. Environ. Sci. Technol. 36:4562-4569. https://doi.org/10.1021/es011507s

Cited by

  1. Phytohormone-producing fungal endophytes and hardwood-derived biochar interact to ameliorate heavy metal stress in soybeans vol.50, pp.7, 2014, https://doi.org/10.1007/s00374-014-0937-4
  2. Analysis of Soil Properties and Microbial Communities for Mine Soil Vegetation vol.20, pp.3, 2015, https://doi.org/10.7857/JSGE.2015.20.3.083