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Abstract. In this paper, we consider two extreme sets of zero-term rank sum of fuzzy
matrix pairs:

Z1(F) = {(X,Y ) ∈ Mm,n(F)
2|z(X + Y ) = min{z(X), z(Y )}};

Z2(F) = {(X,Y ) ∈ Mm,n(F)
2|z(X + Y ) = 0}.

We characterize the linear operators that preserve these two extreme sets of zero-term

rank sum of fuzzy matrix pairs.

1. Introduction and preliminaries

During the last century, problems on the characterization of the linear operators
that leave certain matrix subsets invariants were actively studied. For survey of
these types of problems, we refer to the article of Song([7]) and the papers in [6].
The specified frame of problems is of interest both for matrices with entries from
a field and for matrices with entries from an arbitrary semiring such as Boolean
algebra, nonnegative integers, and fuzzy semiring. It is necessary to note that there
are several rank functions over a semiring that are analogues of the classical function
of the matrix rank over a field. Detailed research and self-contained information
about rank functions over semirings can be found in [1] and [7].

There are some results on the inequalities for the rank function of matrices([1],
[2], [3] and [4]). Beasley and Guterman ([1]) investigated the rank inequalities of
matrices over semirings. And they characterized the equality cases for some rank
inequalities in [2]. The investigation of linear preserver problems of extreme cases
of the rank inequalities of matrices over fields was obtained in [4]. The structure of
matrix varieties which arise as extremal cases in the inequalities is far from being
understood over fields, as well as semirings. A usual way to generate elements of
such a variety is to find a matrix pairs which belongs to it and to act on this set
by various linear operators that preserve this variety. Song and his colleagues ([3])
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characterized the linear operators that preserve the extreme cases of column rank
inequalities over semirings. There are some results on the linear operators that
preserve zero-term rank([5]).

In this paper, we characterize linear operators that preserve the sets of matrix
pairs which satisfy extreme cases for the zero term rank inequalities for the sum of
matrices over fuzzy semirings.

Definition 1.1. A semiring S consists of a set S and two binary operations, addition
and multiplication, such that:

• S is an Abelian monoid under addition (identity denoted by 0);

• S is a semigroup under multiplication (identity, if any, denoted by 1);

• multiplication is distributive over addition on both sides;

• s0 = 0s = 0 for all s ∈ S.

Definition 1.2. A semiring is called antinegative if the zero element is the only
element with an additive inverse.

Definition 1.3. A semiring is called chain if the set S is totally ordered with uni-
versal lower and upper bounds and the operations are defined by a+ b = max{a, b}
and a · b = min{a, b}.

It is straightforward to see that any chain semiring is commutative and antineg-
ative.

Throughout we assume that m ≤ n. The matrix In is the n×n identity matrix,
Jm,n is the m× n matrix of all ones, Om,n is the m× n zero matrix. We omit the
subscripts when the order is obvious from the context and we write I, J , and O,
respectively. The matrix Ei,j , called a cell, denotes the matrix with exactly one
nonzero entry, that being a one in the (i, j) entry. Let Ri denote the matrix whose
ith row is all ones and is zero elsewhere, and Cj denote the matrix whose jth column
is all ones and is zero elsewhere. We let |A| denote the number of nonzero entries
in the matrix A.

Definition 1.4. Let R be the field of reals, let F={α ∈ R | 0 ≤ α ≤ 1} denote
a subset of reals. Define a + b = max{a, b} and a · b = min{a, b} for all a,b in F.
Then (F,+, ·) is called a fuzzy semiring. Let Mm,n(F) denote the set of all m × n
matrices with entries in a fuzzy semiring F . We call a matrix in Mm,n(F) as a
fuzzy matrix.

Definition 1.5. A line of a matrix A is a row or a column of the matrix A.

Definition 1.6. A matrix A ∈ Mm,n(S) has term rank k (t(A) = k) if the least
number of lines needed to include all nonzero elements of A is equal to k. Let us
denote by c(A) the least number of columns needed to include all nonzero elements
of A and by r(A) the least number of rows needed to include all nonzero elements
of A.
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Definition 1.7. A matrix A ∈ Mm,n(S) has zero-term rank k (z(A) = k) if the
least number of lines needed to include all zero elements of A is equal to k.

Example 1.8. Let

A =

 1 1
2

1
3

1
2 0 1

4
1 1

3
1
2

 , B =

 1 0 0
1
2

1
2 0

0 0 0


be matrices over fuzzy semiring F. Then z(A) = 1 and z(B) = 3.

Definition 1.9. A matrix A ∈ Mm,n(S) has factor rank k (rank(A) = k) if there
exist matrices B ∈ Mm,k(S) and C ∈ Mk,n(S) such that A = BC and k is the
smallest positive integer such that such a factorization exists. By definition the
only matrix with factor rank equal to 0 is the zero matrix, O.

If S is a subsemiring of a certain field then there is a usual rank function ρ(A)
for any matrix A ∈ Mm,n(S). It is easy to see that these functions are not equal in
general but the inequality rank(A) ≥ ρ(A) always holds.

Example 1.10. Consider Z+, the set of nonnegative integers. The semiring Z+ is
embedded in the real field R. Then the matrix

A =

 0 1 2
2 1 0
3 3 3


has different values as, where rank(A)=3 and ρ(A)=2.

Definition 1.11. Let F be a fuzzy semiring. An operator T : Mm,n(F) → Mm,n(F)
is called linear if T (X + Y ) = T (X) + T (Y ) and T (αX) = αT (X) for all
X,Y ∈ Mm,n(F), α ∈ F.

Definition 1.12. We say an operator, T , preserves a set P if X ∈ P implies that
T (X) ∈ P, or, if (X,Y ) ∈ P implies that (T (X), T (Y )) ∈ P when P is a set of
ordered pairs.

Definition 1.13. An operator T strongly preserves the set P if X ∈ P if and only
if T (X) ∈ P, or, if (X,Y ) ∈ P if and only if (T (X), T (Y )) ∈ P when P is a set of
ordered pairs.

Definition 1.14. The matrix X ◦ Y denotes the Hadamard or Schur product , i.e.,
the (i, j) entry of X ◦ Y is xi,jyi,j .

Definition 1.15. An operator T is called a (P,Q,B)-operator if there exist per-
mutation matrices P and Q, and a matrix B with no zero entries, such that
T (X) = P (X ◦ B)Q for all X ∈ Mm,n(F), or, if m = n, T (X) = P (X ◦ B)tQ
for all X ∈ Mm,n(F). A (P,Q,B)-operator is called a (P,Q)-operator if B = J , the
matrix of all ones.
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It was shown in [2] and [4] that linear preservers for extremal cases of classical
matrix inequalities over fields are types of (P,Q)-operators where P and Q are
arbitrary invertible matrices. On the other side, linear preservers for various rank
functions over semirings have been the object of much study during the last years(see
for example [6]), in particular term rank and zero term rank were investigated in
the last few years(see for example [5]).

Definition 1.16. We say that the matrix A dominates the matrix B if and only if
bi,j ̸= 0 implies that ai,j ̸= 0, and we write A ≥ B or B ≤ A.

Definition 1.17. If A and B are matrices and A ≥ B we let A\B denote the
matrix C where

ci,j =

{
0 if bi,j ̸= 0;

ai,j otherwise.

The behavior of the function ρ with respect to matrix multiplication and addi-
tion is given by the following inequalities:
The rank-sum inequalities:

| ρ(A)− ρ(B) |≤ ρ(A+B) ≤ ρ(A) + ρ(B);

Sylvester’s laws:

ρ(A) + ρ(B)− n ≤ ρ(AB) ≤ min{ρ(A), ρ(B)};

and the Frobenius inequality:

ρ(AB) + ρ(BC) ≤ ρ(ABC) + ρ(B),

where A,B and C are conformal matrices with coefficients from a field.

2. Zero-term rank inequality over fuzzy semiring

We obtain inequalities for the zero-term rank addition over fuzzy semirings. We
also show that these inequalities are exact and best possible.

Proposition 2.1. Let F be a fuzzy semiring. For A,B ∈ Mm,n(F) one has that
0 ≤ z(A+B) ≤ min{z(A), z(B)}. These bounds are exact and the best possible.

Proof. The lower bound follows from the definition of the zero-term rank function.
In order to check that this exact and the best possible for each pair (r, s), 0 ≤

r, s ≤ min{m,n} let us consider the family of matrices Ar = J\(Σr
i=1Ei,i), Bs =

J\(Σs
i=1Ei,i+1) if s < min{m,n} and Bs = J\(Σs−1

i=1Ei,i+1 +Es,l) if s = min{m.n}.
Then z(Ar) = r, z(Bs) = s by definition and z(Ar +Bs) = 0 by antinegativity.

The upper bound follows directly from the definition of zero-term rank and from
the antinegativity of F. For the proof of its exactness let us take A = J and B = O.
In order to check that this bound is the best possible we consider the following
family of matrices: for each pair (r, s), 0 ≤ r, s ≤ min{m,n} let us consider the
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matrices Ar = J\(Σr
i=1Ei,i) and Bs = J\(Σs

i=1Ei,i). 2

Proposition 2.2. Let F be a fuzzy semiring. For A ∈ Mm,n(F), B ∈ Mn,k one has
that 0 ≤ z(AB) ≤ min{z(A) + z(B), k,m}. These bounds are exact and the best
possible for n > 2.

Proof. The lower bound follows from the definition of the zero-term rank function.
In order to show that this bound is exact and the best possible let us consider the
family of matrices: for each pair (r, s), 0 ≤ r ≤ min{m,n}, 0 ≤ s ≤ min{k, n},
we take Ar = J\(Σs

i=1Ei,i), Bs = J\(Σs
i=1Ei,i+1) if s < min{k, n} and Bs =

J\(Σs−1
i=1Ei,i+1 + Es,1) if s = min{k, n}. Then z(Ar) = r, z(Bs) = s by defini-

tion and if n > 2 then ArBs does not have zero elements by antinegativity. Thus
z(ArBs) = 0.

The upper bound follows directly from the definition of zero-term rank and from
the antinegativity of F.

In order to show that this bound is exact and the best possible let us consider
the family of matrices: for each pair (r, s), 0 ≤ r ≤ min{m,n}, 0 ≤ s ≤ min{k, n},
we take Ar = J\(Σr

i=1Ri) and Bs = J\(Σs
i=1Ci). 2

Example 2.3. The triple (C1, I, R1) is a counterexample to the zero-term rank
version of the Frobenius inequality, since

z(C1) + z(R1) = 2n− 2 > z(C1R1) + z(I) = n

for n > 2.

3. Basic results for linear operators on fuzzy semiring

In this section, we obtain some basic results for our main theorems in the section
4. For a surjective linear operator, we have the followings.

Theorem 3.1. Let F be a fuzzy semiring and T : Mm,n(F) → Mm,n(F) be a linear
operator. Then the following are equivalent:

1. T is bijective,

2. T is surjective,

3. There exists a permutation σ on {(i, j) | i = 1, 2, · · · ,m; j = 1, 2, · · · , n} such
that T (Ei,j) = Eσ(i,j).

Proof. That 1) implies 2) and 3) implies 1) is straight forward. We now show that
2) implies 3).

We assume that T is surjective. Then, for any pair (i, j), there exists some X
such that T (X) = Ei,j . Clearly X ̸= O by the linearity of T . Thus there is a pair
of indexes (r, s) such that X = xr,sEr,s + X ′ where (r, s) entry of X ′ is zero and
the following two conditions are satisfied: xr,s ̸= 0 and T (Er,s) ̸= O. Indeed, if in
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the contrary for all pairs (r, s) either xr,s = 0 or T (Er,s) = O then T (X) = 0 which
contradicts with the assumption T (X) = Ei,j ̸= 0. Hence

T (xr,sEr,s) ≤ T (xr,sEr,s) + T (X \ (xr,sEr,s)) = T (X) = Ei,j .

That is, xr,sT (Er,s) = T (xr,sEr,s) ≤ Ei,j . Thus T (xr,sEr,s) = αEi,j for a cer-
tain α ∈ F. That is there is some permutaion σ on {(i, j) | i = 1, 2, · · · ,m; j =
1, 2, · · · , n} such that for some scalars bi,j , T (Ei,j) = bi,jEσ(i,j). we now only need
show that the bi,j are all units. Since T is surjective and T (Er,s) ̸≤ Eσ(i,j) for
(r, s) ̸= (i, j), there is some α such that T (αEi,j) = Eσ(i,j). But then, since T is
linear, T (αEi,j) = αT (Ei,j) = αbi,jEσ(i,j) = Eσ(i,j). That is, αbi,j = 1, or bi,j is a
unit. But 1 is the only unit over fuzzy semiring. 2

Lemma 3.2 Let F be a fuzzy semiring, T : Mm,n(F) → Mm,n(F) be an oper-
ator which maps lines to lines and is defined by T (Ei,j) = Eσ(i,j), where σ is a
permutation on the set {(i, j) | i = 1, 2, · · · ,m; j = 1, 2, · · · , n}. Then T is a
(P,Q)-operator.

Proof. Since no combination of u rows and v columns can dominate J where
u + v = m unless v = 0 (or if m = n, if u = 0) we have that either the image
of each row is a row and the image of each column is a column, or m = n and the
image of each row is a column and the image of each column is a row. Thus, there
are permutation matrices P and Q such that T (Ri) ≤ PRiQ and T (Cj) ≤ PCjQ or,
if m = n, T (Ri) ≤ P (Ri)

tQ and T (Cj) ≤ P (Cj)
tQ. Since each cell lies in the inter-

section of a row and a column and T maps nonzero cells to nonzero (weighted) cells,
it follows that T (Ei,j) = PEi,jQ, or, if m = n, T (Ei,j) = PEj,iQ = P (Ei,j)

tQ. 2

4. The zero-term rank preservers over fuzzy semiring

In this section, we obtain the characterizations of the linear operators that pre-
serve the set of matrix pairs which arise as the extremal cases in the inequalities of
zero-term rank of matrix sums.

Below, we use the following notations in order to denote sets of matrices that
arise as extremal cases in the inequalities of zero-term rank of matrix sums listed
in section 3.

Z1(F) = {(X,Y ) ∈ Mm,n(F)
2|z(X + Y ) = min{z(X), z(Y )}};

Z2(F) = {(X,Y ) ∈ Mm,n(F)
2|z(X + Y ) = 0}.

4.1. Linear preservers of Z1(F)

Consider the set of matrix pairs:

Z1(F) = {(X,Y ) ∈ Mm,n(F)
2|z(X + Y ) = min{z(X), z(Y )}}.

We characterize the linear operators that preserve the set Z1(F).
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Example 4.1. Let

X =

 1
2 0 1
1
3 0 1

2
1 0 1

2

 , Y =

 1 0 1
2

1
2 0 1

3
1
3 0 1

2


be matrices over fuzzy semiring F. Then z(X + Y ) = z(

 1 0 1
1
2 0 1

2
1 0 1

2

) = 1 while

z(X) = z(Y )=1. Therefore (X,Y ) ∈ Z1(F) and hence Z1(F) is not empty.

Theorem 4.2. Let F be a fuzzy semiring, T : Mm,n(F) → Mm,n(F) be a surjective
linear map. Then T preserves the set Z1(F) if and only if T is a (P,Q)-operator,
where P and Q is a permutation matrices of appropriate sizes.

Proof. By Theorem 3.1 we have that T (Ei,j) = Eσ(i,j) for all i, j, 1 ≤ i ≤ m,
1 ≤ j ≤ n, where σ is a permutation on the set of pairs (i, j).

Let us show that T maps lines to lines. Suppose that the images of two cells
are not in the same line, but the cells are, say Ei,j , Ei,k are the cells such that
T (Ei,j), T (Ei,k) are not in the same line. Then one has that z((J\Ei,j\Ei,k) +
Ei,k) = 1 = z(J\Ei,j\Ei,k), i.e. (J\Ei,j\Ei,k, Ei,k) ∈ Z1, as far as

z(T (J\Ei,j\Ei,k) + T (Ei,k)) = 1 < 2 = min{z(T (J\Ei,j\Ei,k)), z(T (Ei,k)},

i.e. (T (J\Ei,j\Ei,k), T (Ei,k)) /∈ Z1, a contradiction. Thus T maps lines to lines. By
Lemma 3.2 it follows that T is a (P,Q)-operator where P and Q are permutation
matrices of appropriate sizes.

Conversely, if (X,Y ) ∈ Z1 then z(X + Y ) = z(X), and hence z(P (X + Y )Q) =
z(PXQ), and z(T (X + Y )) = z(T (X)). Hence (T (X), T (Y )) ∈ Z1. That is, T
preserves Z1. 2

4.2. Linear preservers of Z2(F)

Consider the set of matrix pairs:

Z2(F) = {(X,Y ) ∈ Mm,n(F)
2|z(X + Y ) = 0}.

We characterize the linear operators that preserve the set Z2(F).

Example 4.3. Let

X =

 1
2 0 1
1
3 0 1

2
1 0 1

2

 , Y =

 1 1
2 0

1
2

1
2 0

1
3

1
2 0


be matrices over fuzzy semiring F. Then z(X + Y ) = z(

 1 1
2 1

1
2

1
2

1
2

1 1
2

1
2

) = 0.

Therefore (X,Y ) ∈ Z2(F) and hence Z2(F) is not empty.
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Theorem 4.4. Let F be a fuzzy semiring, T : Mm,n(F) → Mm,n(F) be a surjective
linear map. Then T preserves the set Z2(F) if and only if T is a (P,Q)-operator,
where P and Q is a permutation matrices of appropriate sizes.

Proof. By Theorem 3.1 we have that T (Ei,j) = Eσ(i,j) for all i, j, 1 ≤ i ≤ m,
1 ≤ j ≤ n, where σ is a permutation on the set of pairs {(i, j)|1 ≤ i ≤ m, 1 ≤ j ≤ n}.

Let us show that T maps lines to lines. For all i = 1, 2, . . . , n, let C1 + . . . +
Cn−1 = X, Y = Cn. Then z(X + Y ) = z(J) = 0. Hence z(T (X) + T (Y )) = 0 by
assumption. Thus each column is mapped under T to a column. Similarly, each
row is mapped under T to a row. Thus T maps lines to lines.

By Lemma 3.2 it follows that T is a (P,Q)-operator where P and Q are per-
mutation matrices of appropriate sizes.

Conversely, if z(X + Y ) = 0, then sets of zero cells in X and Y are disjoint.
Thus the same holds for T (X) and T (Y ) since σ is a permutation on the set of pairs
{(i, j)|1 ≤ i ≤ m, 1 ≤ j ≤ n}. Hence in (T (X) + T (Y )) there is no zero elements.
i.e. z(T (X) + T (Y )) = 0. Thus (P,Q)-operator preserves the set Z2(F). 2

As a concluding remark, we have characterized the linear operators that pre-
serve the extreme sets of the zero-term rank inequalities of the matrix sums over
fuzzy semirings. For further research, we hope to study the zero-term rank inequal-
ities of matrix product over fuzzy semirings.
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