DOI QR코드

DOI QR Code

Preconditioning Cubic Spline Collocation Methods for a Coupled Elliptic Equation

  • Received : 2010.09.13
  • Accepted : 2010.09.17
  • Published : 2010.09.30

Abstract

A low-order finite element preconditioner is analyzed for a cubic spline collocation method which is used for discretizations of coupled elliptic problems derived from an optimal control problrm subject to an elliptic equation. Some numerical evidences are also provided.

Keywords

References

  1. P. Bochev and M. Gunzburger, Least-squares finite element methods for optimality systems arising in optimization and control problems, SIAM J. Numer. Anal., 43(2006), 2517-2543. https://doi.org/10.1137/040607848
  2. Y. Chen, N. Yi and W. Liu, A Legendre-Galerkin spectral method for optimal control problems governed by elliptic equations, SIAM J. Numer. Anal., 46(2008), 2254-2275. https://doi.org/10.1137/070679703
  3. J. Douglas and T. Dupont, Collocation methods for parabolic equations in a single space variable, Lecture Notee in Mathematics 385, Springer-Verlag Press, Cambridge, UK, 2002.
  4. S. C. Eisenstat, H. C. Elman, and M. H. Schultz, Variational iterative methods for nonsymmetric systems of linear equations, SIAM J. Numer. Anal., 20(1983), 345-357. https://doi.org/10.1137/0720023
  5. A. Greenbaum, Iterative methods for solving linear systems, SIAM, Philadelphia, 1997.
  6. M. Gunzburger, Perspectives in Flow Control and Optimization, Adv. Des. Control 5, SIAM, Philadelphia, 2002.
  7. R. A. Horn and C. R. Johnson, Topics in Matrix Analysis. Cambridge University Press, Cambridge, 1994.
  8. S. D. Kim, Piecewise bilinear preconditioning of high-order finite element methods, ETNA, 26(2007), 228-242.
  9. S. Kim and S. D. Kim, Preconditioning on high-order element methods using Chebyshev-Gauss-Lobatto notes, Applied Numerical Mathematics, 59(2009) 316-333. https://doi.org/10.1016/j.apnum.2008.02.007
  10. S. D. Kim and S. Kim, Exponential decay of $C^1$-cubic splines vanishiing at two symmetric points in each knot interval, Numer. Math., 76(1997), 470-488.
  11. S. D. Kim and S. V. Parter, Preconditioning Chebyshev spectral collocation method for elliptic partial differential equations, SIAM J. Numer. Anal., 33(1996), 2375-2400. https://doi.org/10.1137/S0036142994275998
  12. S. D. Kim and S. V. Parter, Preconditioning cubic spline collocation discretizations of elliptic equations, Numer. Math., 72(1995), 39-72. https://doi.org/10.1007/s002110050159
  13. S. D. Kim and B. C. Shin, On the exponential decay of $C^1$ cubic Lagrange splines on non-uniform meshes and for non-uniform data points, Houston J. of Math., 24(1998), 173-183.
  14. Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric lienar systems, SIAM J. Sci. Comput., 7(1986), 856-869. https://doi.org/10.1137/0907058
  15. L. N. Trefethen and D. B. Bau, Numerical linear algegra, SIAM, Philadelphia, 1997.