References
- P. Bochev and M. Gunzburger, Least-squares finite element methods for optimality systems arising in optimization and control problems, SIAM J. Numer. Anal., 43(2006), 2517-2543. https://doi.org/10.1137/040607848
- Y. Chen, N. Yi and W. Liu, A Legendre-Galerkin spectral method for optimal control problems governed by elliptic equations, SIAM J. Numer. Anal., 46(2008), 2254-2275. https://doi.org/10.1137/070679703
- J. Douglas and T. Dupont, Collocation methods for parabolic equations in a single space variable, Lecture Notee in Mathematics 385, Springer-Verlag Press, Cambridge, UK, 2002.
- S. C. Eisenstat, H. C. Elman, and M. H. Schultz, Variational iterative methods for nonsymmetric systems of linear equations, SIAM J. Numer. Anal., 20(1983), 345-357. https://doi.org/10.1137/0720023
- A. Greenbaum, Iterative methods for solving linear systems, SIAM, Philadelphia, 1997.
- M. Gunzburger, Perspectives in Flow Control and Optimization, Adv. Des. Control 5, SIAM, Philadelphia, 2002.
- R. A. Horn and C. R. Johnson, Topics in Matrix Analysis. Cambridge University Press, Cambridge, 1994.
- S. D. Kim, Piecewise bilinear preconditioning of high-order finite element methods, ETNA, 26(2007), 228-242.
- S. Kim and S. D. Kim, Preconditioning on high-order element methods using Chebyshev-Gauss-Lobatto notes, Applied Numerical Mathematics, 59(2009) 316-333. https://doi.org/10.1016/j.apnum.2008.02.007
-
S. D. Kim and S. Kim, Exponential decay of
$C^1$ -cubic splines vanishiing at two symmetric points in each knot interval, Numer. Math., 76(1997), 470-488. - S. D. Kim and S. V. Parter, Preconditioning Chebyshev spectral collocation method for elliptic partial differential equations, SIAM J. Numer. Anal., 33(1996), 2375-2400. https://doi.org/10.1137/S0036142994275998
- S. D. Kim and S. V. Parter, Preconditioning cubic spline collocation discretizations of elliptic equations, Numer. Math., 72(1995), 39-72. https://doi.org/10.1007/s002110050159
-
S. D. Kim and B. C. Shin, On the exponential decay of
$C^1$ cubic Lagrange splines on non-uniform meshes and for non-uniform data points, Houston J. of Math., 24(1998), 173-183. - Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric lienar systems, SIAM J. Sci. Comput., 7(1986), 856-869. https://doi.org/10.1137/0907058
- L. N. Trefethen and D. B. Bau, Numerical linear algegra, SIAM, Philadelphia, 1997.