
KYUNGPOOK Math. J. 50(2010), 337-343

Affine Translation Surfaces with Constant Gaussian Curva-
ture

Yu Fu∗ and Zhong-Hua Hou
School of Mathematical Sciences, Dalian University of Technology, Dalian 116024,
P. R. China
e-mail : yu_fu@yahoo.cn and zhhou@dlut.edu.cn

Abstract. We study affine translation surfaces in R3 and get a complete classification of

such surfaces with constant Gauss-Kronecker curvature.

1. Introduction

A surface in E3 is called a translation surface if it is obtained as a graph of a func-
tion F (x, y) = p(x)+q(y), where p(x) and q(y) are differentiable functions. It’s well
known that a minimal translation surface in the Euclidean space E3 must be a plane
or a Scherk surface, which is the graph of the function F (x, y) = ln(cos x/ cos y),
the only doubly periodic minimal translation surface.

In this note, we study nondegenerate translation surfaces in affine space R3.
This class of surfaces has been studied previously by many geometers. F. Manhart
[3] classified all the nondegenerate affine minimal translation surfaces in affine space
R3. Further treatments are due to H. F. Sun [5], who classified the nondegenerate
affine translation surface with nonzero constant mean curvature in R3. Later on,
Sun and Chen extended this into the case of hypersurfaces [6]. On the other hand,
Binder [1] classified locally symmetric affine translation surfaces in R3. Here we give
a complete classification of nondegenerate affine translation surfaces with constant
Gaussian curvature in R3. Precisely, we will prove the following theorems.

Theorem 1.1. Let M be a nondegenerate affine translation surface in R3 with
vanishing Gaussian curvature. Then M is affinely equivalent to one of the graph of
the following functions:

z = x2 + q(y);(1.1)

z = ex ± y
1
2 ;(1.2)

z = x ln x± y ln y;(1.3)
z = ln x± ln y;(1.4)

z = x
3−2λ
1−λ ± y

3−2λ
5−3λ ,(1.5)
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where q(y) is an arbitrary function and λ is a constant satisfying λ 6= 1, 3
2 , 5

3 , 2.

Theorem 1.2. Let M be a nondegenerate affine translation surface in R3 with
nonzero constant Gaussian curvature. Then M is affinely equivalent to the graph
given by:

z =
1
x2

+ q(y),(1.6)

where q(y) satisfies (q′′′)2 = q′′
13
4 (aq′′−

3
4 + b) for constants a, b and a 6= 0.

2. Preliminaries

Concerning the following basic facts of affine differential geometry, we refer
to [4]. Let f : M → R3 be an immersion of a connected, orientable 2-dimensional
differentiable manifold into the affine space R3 equipped with usual flat connection
D, a parallel volume element ω, and ξ be an arbitrary local field of transversal
vector to f(M). Thus we have the decomposition

DX(f∗Y ) = f∗(∇XY ) + h(X, Y )ξ,(2.1)
DXξ = −f∗(SX) + τ(X)ξ.(2.2)

Thus we have an induced affine connection ∇, a symmetric tensor h of type (0,2), a
tensor S of type (1,1) and 1-form τ on M and we call h, S and τ the affine second
fundamental form, the affine shape operator and the affine transversal connection
form, respectively. The affine mean curvature H and the affine Gaussian curvature
K are defined by

H =
1
2

TrS, K = det S.(2.3)

We define a volume element θ on M by

θ(X1, X2) = ω(f∗(X1), f∗(X2), ξ),

for any tangent vector fields X1, X2 of M .
We say that f is nondegenerate if h is nondegenerate. This condition does not

depend on choice of ξ. It’s well known that there exists unique choice of ξ such
that the corresponding induced connection ∇, the nondegenerate metric h, and the
induced volume θ satisfy

(1) (∇, θ) is an equiaffine structure, that is, ∇θ = 0.
(2) θ coincides with the volume element ωh of the nondegenerate metric h, where

ωh = |det(h(Xi, Xj))| 12 . We call such a pair (f, ξ) a Blaschke immersion, ∇ the
induced connection and h the affine metric. Condition (2) implies that τ = 0.

Let z = F (x1, x2) be a differential function on a domain G in R3 and consider
the immersion

f : (x1, x2) ∈ G 7→ (x1, x2, F (x1, x2)) ∈ R3.
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We start with a tentative choice of transversal field ξ = (0, 0, 1). Since D∂iξ = 0,
we have τ = 0. Denoting by ∂i the coordinate vector field ∂/∂i we have

f∗(∂1) = (1, 0, F1), f∗(∂2) = (0, 1, F2),

where Fj = ∂F/∂xj . Thus

D∂if∗(∂j) = (0, 0, Fij) = Fijξ, Fij =
∂2F

∂xi∂xj
,(2.4)

which implies

∇∂i
∂j = 0, h(∂i, ∂j) = Fij .

Thus the immersion is nondegenerate if and only if det(Fij) 6= 0. Since

θ(∂1, ∂2) = det(f∗(∂1), f∗(∂2), ξ) = 1,

by taking φ = | det(Fij)| 14 , we can find the affine normal field ξ in the form

ξ = −
∑

j,k

(F kjφj)f∗(∂k) + φξ,

where φj = ∂φ/∂xj , (F ij) is the inverse of the matrix (Fij). It follows that

D∂iξ = −
∑

j,k

∂i(F kjφj)f∗(∂k), S(∂i) =
∑

j,k

∂i(F kjφj)∂k.(2.5)

3. Proof of the theorems

Throughout this section, we assume that M is a translation surface, which
is obtained by the graph of function F (x, y) = p(x) + q(y) for some differential
functions p(x) and q(y). Hence, we have

(Fij) = (hij) =
(

p′′(x) 0
0 q′′(y)

)
, (F ij) = (Fij)−1 =

(
p′′(x)−1 0

0 q′′(y)−1

)
,

and

φ = |det(Fij)| 14 = |p′′(x)q′′(y)| 14 6= 0.

It follows from (2.4) and (2.5) that the Gaussian curvature satisfies

K = ∂1(F 11φ1)∂2(F 22φ2)− ∂1(F 22φ2)∂2(F 11φ1)

= (− 7
16

p′′′2 +
1
4
p(4)p′′)(− 7

16
q′′′2 +

1
4
q(4)q′′)(p′′q′′)−

5
2 − 1

256
p′′′2q′′′2(p′′q′′)−

5
2

= (
12
64

p′′′2q′′′2 − 7
64

p′′′2q′′q(4) − 7
64

p′′p(4)q′′′2 +
1
16

p′′q′′p(4)q(4))(p′′q′′)−
5
2 .
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If we put f(x) = p′′(x), g(y) = q′′(y), then we have

64K = [f ′2(12g′2 − 7gg′′) + ff ′′(4gg′′ − 7g′2)](fg)−
5
2 .(3.1)

Firstly we consider the case when Gaussian curvature K vanishes identically, then

f ′2(12g′2 − 7gg′′) + ff ′′(4gg′′ − 7g′2) = 0.(3.2)

From (3.2), it follows that f and g can be interchanged with each other. If f ′(x) = 0,
we can easily get that p(x) = ax2 + bx + c, where a, b, c are constant. By applying
an affine transformation, we get the graph of function in the form (1.1). If g′(y) = 0,
after interchanging x and y, we also obtain (1.1).

From now on, we assume that f ′g′ 6= 0. From (3.2), we get

ff ′′

f ′2
=

12g′2 − 7gg′′

7g′2 − 4gg′′
= λ,(3.3)

which is equivalent to

ff ′′ = λf ′2,(3.4)
12g′2 − 7gg′′ = λ(7g′2 − 4gg′′),(3.5)

where λ is a constant.
We consider the equation (3.4), which splits into two cases:

λ 6= 1, f = (C1x + C2)
1

1−λ , C1 ∈ R \ 0, C2 ∈ R.(3.6)
λ = 1, f = C3e

C4x, C3 ∈ R \ 0, C4 ∈ R.(3.7)

If λ = 1, (3.5) gives 5g′2 = 3gg′′. Using (3.6), we get that

g = (C5y + C6)−
3
2 , C5 ∈ R \ 0, C6 ∈ R.

After a further integral computation, we obtain the graph of the function in the
form (1.2). Especially, if λ = 5

3 , the same graph can be obtained.
If λ = 2, f = (C1x + C2)−1. Integrating twice, we get

p(x) =
(C1x + C2) ln |C1x + C2|

C1
2

− x

C1
+ C3x + C4,

where both C3 and C4 are constant. And 2g′2 = gg′′, similarly, we can get

q(y) =
(D1y + C2) ln |D1y + D2|

D1
2

− y

D1
+ D3y + D4,

where all Di are constant and D1 6= 0. By applying an affine transformation, we
have the graph of function in the form (1.3).

If λ = 3
2 , similarly, after some integral computation, we obtain the function in
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the form (1.4).
In general cases, i.e., λ 6= 1, 3

2 , 5
3 , 2, by an appropriate affine transformation,

equations (3.4)-(3.6) immediately yield case (1.5). This completes the proof of The-
orem 1.1.

Next we assume that K is a nonzero constant. Differentiating (3.1) with respect
to x and y, we get

(4ff ′f ′′ − 5f ′3)(12g′2 − 7gg′′) + (2f2f ′′′ − 3ff ′f ′′)(4gg′′ − 7g′2) = 0,(3.8)
(4gg′g′′ − 5g′3)(12f ′2 − 7ff ′′) + (2g2g′′′ − 3gg′g′′)(4ff ′′ − 7f ′2) = 0.(3.9)

In order to prove Theorem 1.2, we need the following lemma:

Lemma 3.1. If 4ff ′′ 6= 5f ′2 and 4gg′g′′ 6= 5g′3, then K = 0.

Proof. Under the hypothesis, 4ff ′′ 6= 5f ′2 and 4gg′g′′ 6= 5g′3, from (3.8) and (3.9)
we see that there exist two constants λ and µ such that

2f2f ′′′ − 3ff ′f ′′ = λ(4ff ′f ′′ − 5f ′3),(3.10)
7gg′′ − 12g′2 = λ(4gg′′ − 7g′2),(3.11)

2g2g′′′ − 3gg′g′′ = µ(4gg′g′′ − 5g′3),(3.12)
7ff ′′ − 12f ′2 = µ(4ff ′′ − 7f ′2).(3.13)

Differentiating (3.11) with respect to y, we get

(4λ− 7)gg′′′ = (10λ− 17)g′g′′,(3.14)

clearly λ 6= 7
4 , λ 6= 12

7 . Substituting (3.11) and (3.14) into (3.12), we get

2(10λ− 17)
4λ− 7

− (4µ + 3) +
5µ(4λ− 7)

7λ− 12
= 0,(3.15)

i.e.

(13− 8λ)(12− 7µ + λ(4µ− 7)) = 0.(3.16)

Similarly, differentiating (3.13) with respect to x, we can get

(13− 8µ)(12− 7µ + λ(4µ− 7)) = 0,(3.17)

where µ 6= 7
4 , µ 6= 12

7 . If λ = µ = 13
8 , (3.11) and (3.13) give 4ff ′′ = 5f ′2 and

4gg′g′′ = 5g′3, thus we have

12− 7µ + λ(4µ− 7) = 0.(3.18)

Substituting (3.18) into (3.11) we get µg′2 = gg′′. Then substituting (3.13) into
(3.1) we can find K=0. 2
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Proof of Theorem 1.2. Under the hypothesis, K is a nonzero constant. From
Lemma 3.1, we have either 4ff ′′ = 5f ′2 or 4gg′′ = 5g′2. Without loss of generality,
we assume 4ff ′′ = 5f ′2. Hence (3.1) reduces to

256K = [f ′2(13g′2 − 8gg′′)](fg)−
5
2 .(3.19)

Thus there exists a nonzero constant C such that

13g′2 − 8gg′′ = Cg
5
2 .(3.20)

If we put

g′ =
dg

dy
= h,

then

g′′ =
dh

dg
h =

1
2

dh2

dg
.

It follows from (3.20) that

dh2

dg
=

13h2

4g
− C

4
g

3
2 .(3.21)

Solving (3.21) gives

h2 = g
13
4 (ag−

3
4 + b),(3.22)

where a = 1
3C and b is a constant. Hence, by applying an affine transformation, we

have the graph of the function in the form (1.6) of Theorem 1.2. This completes
the proof of Theorem 1.2. 2

4. A special example

In this section, we give a special example of affine translation surfaces in R3

with nonzero constant affine Gaussian curvature.
In view of equation (3.22), it is equivalent to

dg

dy
= ±g

13
8 (ag−

3
4 + b)

1
2 .(4.1)

If b = 0, then (4.1) becomes

g′ = ±a
1
2 g

5
4(4.2)

for a > 0. Solving (4.2) gives

g =
(
c∓ 1

4
a−

1
2 y

)−4
.(4.3)
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Integrating (4.3) twice with respect to y and by applying an affine transformation,
we obtain a graph

z =
1
x2

+
1
y2

,(4.4)

which is a special example of affine translation surfaces with nonzero constant affine
Gaussian curvature.

If b 6= 0, we can not obtain a explicit solution of (4.1). Assume that g−
3
4 = t,

(4.1) implies that

∫
t−

1
6

(at + b)
1
2
dt =

∫
±3

4
dy.(4.5)

The left of equality (4.5) is a binomial calculous,

∫
t−

1
6

(at + b)
1
2
dt =

∫
t−

1
6− 1

2 (
at + b

t
)−

1
2 dt.(4.6)

As is well known, Tchebyshev proved that this kind of integration’s primary func-
tions are not elementary functions.
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