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Abstract. By introducing a homogeneous kernel of 0-degree with an independent pa-

rameter and estimating the weight coefficient, a bilateral form of the Hilbert-type series

inequality with a best constant factor is established.

1. Introduction

If an, bn ≥ 0, 0 <
∞∑

n=1
a2n < ∞ and 0 <

∞∑
n=1

b2n < ∞, then(see [1])

(1.1)
∞∑

n=1

∞∑
m=1

ambn
m+ n

< π

{ ∞∑
n=1

a2n

∞∑
n=1

b2n

}1/2

,

where the constant factor π is the best possible. Inequality (1.1) is well known as
Hilbert’s inequality. Soon after, inequality (1.1) had been generalized by Hardy-
Riesz as(see [1]): If anbn ≥ 0, p > 1, 1

p + 1
q = 1, 0 <

∑∞
n=1 a

p
n < ∞ and 0 <∑∞

n=1 b
q
n < ∞, then

(1.2)

∞∑
n=1

∞∑
m=1

ambn
m+ n

<
π

sin(π/p)

{ ∞∑
n=1

apn

}1/p{ ∞∑
n=1

bqn

}1/q

,

where the constant factor π
sin(π/p) is the best possible. Inequality (1.2) is named

of Hardy-Hilbert’s integral inequality (see [1]). It is important in analysis and
its applications. It was studied extensively and refinements, generalizations and
numerous variants appeared in the literature (see [1]- [6]). Under the same condition
of (1.2), we have the Hardy-Hilbert’s type inequality (see [1], Th. 341, Th. 342) as
follows

(1.3)

∞∑
n=1

∞∑
m=1

ambn
max{m,n}

< pq

{ ∞∑
n=1

apn

}1/p{ ∞∑
n=1

bqn

}1/q

;
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(1.4)
∞∑

n=1

∞∑
m=1

log(m/n)

m− n
ambn < π2 csc2

π

p

{ ∞∑
n=1

apn

}1/p{ ∞∑
n=1

bqn

}1/q

,

where the constant factors pq and π2 csc2 π
p are both the best possible.

In 2008, Yang (see [7]) gave a bilateral inequality as follows: If p > 1, 1
p + 1

q =

1, 0 < λ ≤ 2, a, b, c ≥ 0, a+ bc > 0, an, bn ≥ 0, such that 0 <
∑∞

n=1 n
p(1−λ

2 )−1apn <

∞, 0 <
∑∞

n=1 n
q(1−λ

2 )−1bqn < ∞, then

(1.5) H :=

∞∑
n=1

∞∑
m=1

ambn
amax{mλ, nλ}+ bmλ + cnλ

< Cλ(a, b, c)

{ ∞∑
n=1

np(1−λ
2 )−1apn

}1/p{ ∞∑
n=1

nq(1−λ
2 )−1bqn

}1/q

,

where the constant factor Cλ(a, b, c) is the best possible. In addition, for 0 < p < 1,
Yang got the reverse inequality as follows

(1.6) H :=
∞∑

n=1

∞∑
m=1

ambn
amax{mλ, nλ}+ bmλ + cnλ

> Cλ(a, b, c)

{ ∞∑
n=1

[1− θλ(a, b, c, n)]n
p(1−λ

2 )−1apn

}1/p{ ∞∑
n=1

nq(1−λ
2 )−1bqn

}1/q

,

where θλ(a, b, c,m) := 1
C1(a,b,c)

∫ 1/mλ

0
1

a+b+cuu
−1/2du = O( 1

mλ/2 ) ∈ (0, 1), and the

constant factor Cλ(a, b, c) is the best possible. By the way, in recent years, the
reverse form of the Hardy-Hilbert’s inequality has been studied by Zhong(see [8]),
Zhao(see [9]) and so on.

Until now, we only focus on the Hilbert’s inequality with negative number ho-
mogeneous and non-homogeneous kernel, but we are just at the beginning of the
study on the real number homogeneous kernel. The main purpose of this article
is to establish the bilateral form of the Hilbert’s type inequality concerning series
with the mixed homogeneous kernel of 0-degree.

2. Main results

Lemma 2.1. Set λ > 0, define the weight function ϖλ(m) as

(2.1) ϖλ(m) :=
∞∑

n=1

| ln(m/n)|
mλ + nλ

·min{mλ, nλ} · 1
n

(m ∈ N),

then we have the following inequality:

(2.2)
π2

6λ2
[1− θλ(m)] < ϖλ(m) <

π2

6λ2
,
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where 0 < θλ(m) := 24
π2

∫m−λ
2

0
−t ln t
1+t2 dt = O( 1

mλ/2 ) ∈ (0, 1) (m → ∞).

Proof. On one hand, setting t = (y/m)λ/2, by monotonicity, we have

ϖλ(m) <

∫ ∞

0

| ln(m/y)|
mλ + yλ

·min{mλ, yλ} · 1
y
dy(2.3)

=
4

λ2

∫ ∞

0

| ln t|
1 + t2

·min{1, t2} · t−1dt

=
4

λ2

∫ 1

0

−t ln t

1 + t2
dt+

∫ ∞

1

ln t

t(1 + t2)
dt

=
−8

λ2

∫ 1

0

t ln t

1 + t2
dt =

π2

6λ2
.

On the other hand, similarly, setting t = (y/m)λ/2, we get

ϖλ(m) >

∫ ∞

1

| ln(m/y)|
mλ + yλ

·min{mλ, yλ} · 1
y
dy =

4

λ2

∫ ∞

m−λ
2

| ln t|
1 + t2

·min{1, t2} · t−1dt

=
4

λ2

∫ ∞

0

| ln t|
1 + t2

·min{1, t2} · t−1dt−
∫ m−λ

2

0

| ln t|
1 + t2

·min{1, t2} · t−1dt


=

π2

6λ2
− 4

λ2

∫ m−λ
2

0

| ln t|
1 + t2

·min{1, t2} · t−1dt

=
π2

6λ2

1− 24

π2

∫ m−λ
2

0

−t ln t

1 + t2
dt

 =
π2

6λ2
[1− θλ(m)].

It is obvious that 0 < θλ(m) := 24
π2

∫m−λ
2

0
−t ln t
1+t2 dt < 1. Since∫ m−λ

2

0

−t ln t

1 + t2
dt = −

∫ m−λ
2

0

t ln t
∞∑
k=0

(−t2)kdt

=
∞∑
k=0

(−1)k+1

∫ m−λ
2

0

t2k+1 ln tdt =
∞∑
k=0

(−1)k+1

2k + 2

∫ m−λ
2

0

ln tdt2k+2

=
1

mλ

∞∑
k=0

(−1)k+1

2k + 2

(
−λ

2
· lnm
mλk

− 1

2k + 2
· 1

mλk

)
= O(

1

mλ
) (m → ∞),

then θλ(m) = O( 1
mλ ). Hence (2.2) is valid. The Lemma is proved. 2

Lemma 2.2. If p > 0, p ̸= 1, 1
p + 1

q = 1, λ > 0 and 0 < ε < pλ
2 , define

(2.4) J(ε) =
∞∑

n=1

∞∑
m=1

| ln(m/n)|
mλ + nλ

·min{mλ, nλ} ·m−1− ε
pn−1− ε

q ,
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then for ε → 0+, we have

(2.5)

(
π2

6λ2
− o(1)

) ∞∑
n=1

1

n1+ε
< J(ε) <

(
π2

6λ2
+ õ(1)

) ∞∑
n=1

1

n1+ε
.

Proof. Setting t = ( xn )
λ/2 in the following, in view of Lemma 2.1, we get

J(ε) <
∞∑

n=1

n−1− ε
q

(∫ ∞

0

| ln(x/n)|
xλ + nλ

·min{xλ, nλ} · x−1− ε
p dx

)

=

∞∑
n=1

1

n1+ε

(
4

λ2

∫ ∞

0

| ln t|
1 + t2

·min{1, t2} · t−1− 2ε
pλ dt

)

=

(
π2

6λ2
+ õ(1)

) ∞∑
n=1

1

n1+ε
(ε → 0+);

J(ε) >
∞∑

n=1

n−1− ε
q

(∫ ∞

1

| ln(x/n)|
xλ + nλ

·min{xλ, nλ}x−1− ε
p dx

)

=
∞∑

n=1

1

n1+ε

(
4

λ2

∫ ∞

n−λ
2

| ln t|
1 + t2

·min{1, t2} · t−1− 2ε
pλ dt

)

>

∞∑
n=1

1

n1+ε

(
4

λ2

∫ ∞

0

| ln t|
1 + t2

·min{1, t2} · t−1− 2ε
pλ dt

)

− 4

λ2

∞∑
n=1

1

n

∫ n−λ
2

0

− ln t

1 + t2
dt


=

(
π2

6λ2
+ õ(1)

) ∞∑
n=1

1

n1+ε
− 4

λ2

∞∑
n=1

 1

n

∫ n−λ
2

0

− ln t

1 + t2
dt

 (ε → 0+).

Since

∞∑
n=1

 1

n

∫ n−λ
2

0

− ln t

1 + t2
dt

 =
∞∑

n=1

− 1

n

∫ n−λ
2

0

ln t
∞∑
k=0

(−t2)kdt


=

∞∑
k=0

 (−1)k+1

n

∫ n−λ
2

0

t2k ln tdt

 =
∞∑
k=0

 (−1)k+1

n(2k + 1)

∫ n−λ
2

0

ln tdt2k+1


=

1

n1+λ

∞∑
k=0

(−1)k+1

2k + 1

(
−λ

2
· lnn
nλk

− 1

2k + 1
· 1

nλk

)
= O

(
1

n1+λ

)
.
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In view of the above inequalities, we have

J(ε) >

(
π2

6λ2
+ õ(1)

) ∞∑
n=1

1

n1+ε
− 4

λ2
·O
(

1

n1+λ

)

=

∞∑
n=1

1

n1+ε

( π2

6λ2
+ õ(1)

)
− 4

λ2
·O
(

1

n1+λ

)( ∞∑
n=1

1

n1+ε

)−1


=

∞∑
n=1

1

n1+ε

(
π2

6λ2
− o(1)

)
(ε → 0+).

The Lemma is proved. 2

Theorem 2.3. If p > 1, 1
p +

1
q = 1, λ > 0, an, bn ≥ 0 such that 0 <

∑∞
n=1 n

p−1apn <

∞ and 0 <
∑∞

n=1 n
q−1bqn < ∞, then we have the following inequality

I :=
∞∑

n=1

∞∑
m=1

| ln(m/n)|
mλ + nλ

·min{mλ, nλ}ambn

<
π2

6λ2

{ ∞∑
n=1

np−1apn

}1/p{ ∞∑
n=1

nq−1bqn

}1/q

,

(2.6)

where the constant factor π2

6λ2 is the best possible.

Proof. By Hölder’s inequality with weight[10], we obtain

∞∑
n=1

∞∑
m=1

| ln(m/n)|
mλ + nλ

·min{mλ, nλ}ambn

=

∞∑
n=1

∞∑
m=1

| ln(m/n)|
mλ + nλ

·min{mλ, nλ}
[
m1/q

n1/p
am

] [
n1/p

m1/q
bn

]

≤

{ ∞∑
n=1

∞∑
m=1

| ln(m/n)|
mλ + nλ

·min{mλ, nλ}m
p−1

n
apm

}1/p

×

{ ∞∑
n=1

∞∑
m=1

| ln(m/n)|
mλ + nλ

·min{mλ, nλ}n
q−1

m
bqn

}1/q

=

{ ∞∑
m=1

ϖλ(m)mp−1apm

} 1
p
{ ∞∑

n=1

ϖλ(n)n
q−1bqn

} 1
q

.

In view of (2.2), we have (2.6).

For 0 < ε < λp
2 , setting ãm = m−1− ε

p , b̃n = n−1− ε
q (m,n ∈ N), by (2.4), we

have
∞∑

n=1

∞∑
m=1

| ln(m/n)|
mλ + nλ

·min{mλ, nλ} ·m−1− ε
pn−1− ε

q = J(ε),
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Assume that the constant factor π2

6λ2 in (2.6) is not the best possible, then there

exists a positive number k with 0 < k ≤ π2

6λ2 , such that (2.6) is still correct by

changing π2

6λ2 to k, then, in particular, by (2.5), we have

(
π2

6λ2
− o(1)

) ∞∑
n=1

1

n1+ε
< J(ε) < k

{ ∞∑
n=1

np−1ãpn

}1/p{ ∞∑
n=1

nq−1b̃qn

}1/q

= k

∞∑
n=1

1

n1+ε
.

It follows that π2

6λ2 − o(1) < k, so π2

6λ2 ≤ k(ε → 0+). Hence the constant factor π2

6λ2

in (2.6) is the best possible. This completes the proof. 2

Theorem 2.4. If 0 < p < 1, 1
p + 1

q = 1, λ > 0, an, bn ≥ 0 such that

0 <
∑∞

n=1 n
p−1apn < ∞ and 0 <

∑∞
n=1 n

q−1bqn < ∞, then we have the follow-
ing inequality

I =
∞∑

n=1

∞∑
m=1

| ln(m/n)|
mλ + nλ

·min{mλ, nλ}ambn

>
π2

6λ2

{ ∞∑
n=1

[1− θλ(n)]n
p−1apn

}1/p{ ∞∑
n=1

nq−1bqn

}1/q

,

(2.7)

where 0 < θλ(m) := 24
π2

∫m−λ
2

0
−t ln t
1+t2 dt = O( 1

mλ/2 ) ∈ (0, 1)(m → ∞) and the con-

stant factor π2

6λ2 is the best possible.

Proof. By the reverse Hölder’s inequality with weight[10] and in view of (2.1), we
obtain

I =

∞∑
n=1

∞∑
m=1

| ln(m/n)|
mλ + nλ

·min{mλ, nλ}
[
m1/q

n1/p
am

] [
n1/p

m1/q
bn

]

≥

{ ∞∑
n=1

∞∑
m=1

| ln(m/n)|
mλ + nλ

·min{mλ, nλ}m
p−1

n
apm

}1/p

×

{ ∞∑
n=1

∞∑
m=1

| ln(m/n)|
mλ + nλ

·min{mλ, nλ}n
q−1

m
bqn

}1/q

=

{ ∞∑
m=1

ϖλ(m)mp−1apm

} 1
p
{ ∞∑

n=1

ϖλ(n)n
q−1bqn

} 1
q

.

By (2.2), in view of q < 0, we have (2.7).

For 0 < ε < λp
2 , setting ãm = m−1− ε

p , b̃n = n−1− ε
q (m,n ∈ N), by (2.4), we

have
∞∑

n=1

∞∑
m=1

| ln(m/n)|
mλ + nλ

·min{mλ, nλ} ·m−1− ε
pn−1− ε

q = J(ε).
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Assume that the constant factor π2

6λ2 in (2.7) is not the best possible, then there

exists a positive number k with k ≥ π2

6λ2 , such that (2.7) is still correct by changing
π2

6λ2 to k, then, in particular, by (2.5), we have

(
π2

6λ2
+ õ(1)

) ∞∑
n=1

1

n1+ε
> J(ε) > k

{ ∞∑
n=1

[1− θλ(n)]n
p−1ãpn

}1/p{ ∞∑
n=1

nq−1b̃qn

}1/q

= k

{ ∞∑
n=1

1

n1+ε
−

∞∑
n=1

[
O

(
1

nλ

)
1

n1+ε

]}1/p{ ∞∑
n=1

1

n1+ε

}1/q

= k
∞∑

n=1

1

n1+ε

1−

( ∞∑
n=1

1

n1+ε

)−1 ∞∑
n=1

[
O

(
1

nλ

)
1

n1+ε

]
1/p

.

It follows that

π2

6λ2
+ õ(1) > k

1−

( ∞∑
n=1

1

n1+ε

)−1 ∞∑
n=1

[
O

(
1

nλ

)
1

n1+ε

]
1/p

,

and then π2

6λ2 ≥ k(ε → 0+). Thus the constant factor π2

6λ2 in (2.7) is the best possi-
ble. The theorem is proved. 2
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