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Abstract. Parallel to the plank problem, we investigate the numerical plank problem.

1. Introduction

In this paper we assume that E and F are Banach spaces. Let SE be the
unit sphere of E. For a natural number k, a mapping P : E → F is called a
continuous k-homogeneous polynomial if there is a continuous k-linear mapping
A : E × · · · ×E → F such that P (x) = A(x, . . . , x) for all x ∈ E. We let P(kE : F )
denote the Banach space of continuous k-homogeneous polynomials from E into
F , endowed with the norm ∥P∥ = sup{∥P (x)∥ : ∥x∥ ≤ 1}. If F = R, we denote
P(kE : R) = P(kE). See [7] for details about polynomials on an infinite dimensional
Banach space. By a convex body in Euclidean space Rn we shall mean a compact
convex subset K. If u is a unit vector, we shall mean the width of K in the direction
u is the distance between supporting hyperplanes of K orthogonal to u. A plank in
Rn is the region between two parallel hyperplanes. In 1930 Tarski posed the plank
problem:

Tarski’s conjecture. If a convex body of minimum width 1 is covered by a collec-
tion of planks in Rn, then the sum of the widths of these planks is at least 1.

Tarski proved this if the body is an Euclidean ball in 2 or 3 dimensions. This
problem was solved in general by T. Bang in 1951. Given a convex body K, the
relative width of a plank S is the width of S divided by the width of K in the
direction perpendicular to S. Bang asked a more general question:

Question [3]. If a convex body is covered by a union of planks, must the relative
widths of the planks add up to at least 1?

The general case of this affine plank problem is still open. If K is a centrally
symmetric convex body, then it may be regarded as the unit ball of some finite
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dimensional normed space. K. Ball proved in [2] that if t1, . . . , tn > 0, t1+· · ·+tn = 1
and Φk ∈ SE∗ (k = 1, 2, . . . , n), then there exists an x ∈ SE with |Φk(x)| ≥ tk for
all k. Thus the union of planks of relative width summing up to less than 1 can not
cover the unit ball. As a corollary, the formulated result obtained:

Theorem A. If E is a finite dimensional real Banach space and Φk ∈ SE∗ (k =
1, 2, . . . , n), then there exists an x ∈ SE such that |Φk(x)| ≥ 1

n for all k and the
constant 1

n is best.

It is natural that Theorem A gives rise to the definition of the corresponding
plank constant. Révész and Sarantopoulos [9] studied plank problem for complex
Banach spaces and in particular for the classical Lp(µ) spaces. Contrary to the
linear case, the author [8] recently study the polynomial plank problem as follows:
For n, k ∈ N and a Banach space E, we denote

c(n, k : E) := sup{c > 0 : ∀P1, . . . , Pn ∈ P(kE) with ∥Pj∥ = 1, there exists

x ∈ E with ∥x∥ = 1 such that |Pj(x)| ≥ c, for all j = 1, . . . , n}.

We call c(n, k : E) the polynomial plank constant of E with order n, k. Clearly
0 ≤ c(n, k : E) ≤ 1. Among other results, we showed that c(2, 2 : H) = 1

3 for every
real Hilbert space with dim(H) ≥ 2. We also investigated the polynomial plank
constant c(n, k : E).

Parallel to the polynomial plank problem, we investigate the numerical polyno-
mial plank problem. Let

Π(E) = { (x, x∗) : x ∈ SE , x∗ ∈ SE∗ , x∗(x) = 1 }.

The numerical radius of P ∈ P(kE : E) is defined by

v(P ) := sup { |x∗(P (x))| : (x, x∗) ∈ Π(E)}.

For n, k ∈ N and a Banach space E, we denote

cnum(n, k : E) := sup{c > 0 : ∀P1, . . . , Pn ∈ P(kE : E) with v(Pj) = 1,

there exists (x, x∗) ∈ Π(E) such that |x∗(Pj(x))| ≥ c, for all j = 1, . . . , n}.

We call cnum(n, k : E) the numerical polynomial plank constant of E with order
n, k. Clearly 0 ≤ cnum(n, k : E) ≤ 1.

In this paper we show:
-cnum(n, k : H) = c(n, k + 1 : H) for every Hilbert space H. In particular, we

show that cnum(2, 1 : H) = 1
3 , where H is a real Hilbert space with dim(H) ≥ 2.

-cnum(2, k : l1) = cnum(2, k : l∞) = 0.
For n, k ∈ N and a Banach space E,
-cnum(n, k + 1 : E) ≤ cnum(n, k : E);
-limn,k→∞ cnum(n, k : E) = limn→∞ limk→∞ cnum(n, k : E)
= limk→∞ limn→∞ cnum(n, k : E);
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-cnum(n, k : E∗∗) ≤ cnum(n, k : E).

2. Results

Theorem 2.1. Let n, k ∈ N and H be a Hilbert space. Then cnum(n, k : H) =
c(n, k + 1 : H).

Proof. (≤): Let Q1, . . . , Qn ∈ P(k+1H) with ∥Qj∥ = 1 for all j = 1, . . . , n. By the
Riesz representation theorem for H∗, there exist P1, . . . , Pn ∈ P(kH : H) such that

Qj(x) =< x,Pj(x) > (x ∈ H, ∀j).

By definition of cnum(n, k : H), given ϵ > 0, there exists x0 ∈ SH such that

|Qj(x0)| = | < x0, Pj(x0) > | ≥ cnum(n, k : H)− ϵ, ∀j.

Thus cnum(n, k : H)− ϵ ≤ c(n, k + 1 : H), so cnum(n, k : H) ≤ c(n, k + 1 : H).
(≥): Let P1, . . . , Pn ∈ P(kH : H) with v(Pj) = 1 for all j = 1, 2, · · · , n. Let

Qj ∈ P(k+1H) be such that

Qj(x) :=< x,Pj(x) > (x ∈ H, ∀j).

Then we have

∥Qj∥ = supx∈SH
| < x,Pj(x) > | = v(Pj) = 1, ∀j.

By definition of c(n, k + 1 : H), given ϵ > 0, there exists x0 ∈ SH such that

| < x0, Pj(x0) > | = |Qj(x0)| ≥ c(n, k + 1 : H)− ϵ, ∀j.

Thus cnum(n, k : H) ≥ c(n, k + 1 : H)− ϵ, so cnum(n, k : H) ≥ c(n, k + 1 : H). 2

Corollary 2.2. We have cnum(2, 1 : H) = 1
3 , where H is a real Hilbert space.

Proof. Theorem 3.2 in [8] asserts that c(2, 2 : H) = 1
3 . Thus cnum(2, 1 : H) =

c(2, 2 : H) = 1
3 . 2

By the definition of cnum(n, k : E), the following is obvious.

Proposition 2.3. For n, k ∈ N and a Banach space E, we have

cnum(n+ 1, k : E) ≤ cnum(n, k : E).

Proposition 2.4. For n, k ∈ N and a Banach space E, we have

cnum(n, k + 1 : E) ≤ cnum(n, k : E).

Proof. Let 0 < ϵ < 1 and P1, . . . , Pn ∈ P(kE : E) with v(Pj) = 1 for all j =
1, . . . , n. We can find (xj , x

∗
j ) ∈ Π(E) such that |x∗

j (Pj(xj))| > 1 − ϵ. Note that
v(x∗

jPj) > 1− ϵ for all j. Indeed, it follows that

v(x∗
jPj) = sup{ |x∗

j (x)| |x∗(P (x))| : (x, x∗) ∈ Π(E) }
≥ |x∗

j (xj)| |x∗
j (P (xj))| = |x∗

j (P (xj))|
> 1− ϵ.
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Define Qj(x) :=
x∗
j (x)Pj(x)

v(x∗
jPj)

for all x ∈ E. Then Qj ∈ P(k+1E : E) with v(Qj) = 1

for all j = 1, 2, · · · , n. We can find (x0, x
∗
0) ∈ Π(E) such that |x∗

0(Qj(x0))| =
|x∗

j (x0)| |x∗
0(Pj(x0))|

v(x∗
jPj)

> cnum(n, k + 1 : E)− ϵ for all j. We have

|x∗
0(Pj(x0))| =

v(x∗
jPj)

|x∗
j (x0)|

(cnum(n, k + 1 : E)− ϵ)

>
1− ϵ

|x∗
j (x0)|

(cnum(n, k + 1 : E)− ϵ)

≥ (1− ϵ)(cnum(n, k + 1 : E)− ϵ),

showing (1− ϵ)(cnum(n, k+ 1 : E)− ϵ) ≤ cnum(n, k : E). Since ϵ > 0 was arbitrary,
we have cnum(n, k + 1 : E) ≤ cnum(n, k : E). 2

Theorem 2.5. For the real spaces l1, l∞, we have cnum(2, k : l1) = cnum(2, k :
l∞) = 0 for every k ∈ N.
Proof. First we will show that cnum(2, k : l1) = 0. Let T1, T2 ∈ P(1l1 : l1) be such
that

T1((xn)) := (
1

2
x1,

1

2
x1, 0, 0, . . .), T2((xn)) := (

1

2
x2,−

1

2
x2, 0, 0, . . .)

for (xn) ∈ l1. Then v(Tj) = 1 for all j = 1, 2. Let c ≥ 0 such that there exists
( (wn), (αn) ) ∈ Π(l1) satisfying

| < (αn), Tj((wn)) > | ≥ c for all j = 1, 2.

We will show that c = 0.
Case 1: w1w2 = 0
If w1 = 0, |w2| = 1, then α1 = t, α2 = ±1 for some t ∈ [−1, 1]. Thus

c ≤ | < (αn), T1((wn)) > | = 1

2
|t± 1| |w1| = 0.

Thus c = 0.
If |w1| = 1, w2 = 0, then α1 = ±1, α2 = t for some t ∈ [−1, 1]. By a similar

argument as in the above, c = 0.
Case 2: w1w2 ̸= 0
If w1w2 > 0, then α1 = α2 = 1 or α1 = α2 = −1. Thus

c ≤ | < (αn), T2((wn)) > | = 0.

Thus c = 0.
If w1w2 < 0, then α1 = 1, α2 = −1 or α1 = −1, α2 = 1. By a similar argument

as in the above, c = 0, which shows cnum(2, k : l1) = 0. Some similar argument as
in the above shows that cnum(2, k : l∞) = 0. Therefore, we complete the proof. 2
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Proposition 2.6. Suppose E is an infinite dimensional Banach space. Then

lim
n,k→∞

cnum(n, k : E) = lim
n→∞

lim
k→∞

cnum(n, k : E) = lim
k→∞

lim
n→∞

cnum(n, k : E).

Proof. By Proposition 2.4, for each n ∈ N, (cnum(n, k : E))∞k=1 is a de-
creasing sequence in [0, 1]. So limk→∞ cnum(n, k : E) exists in [0, 1]. Let an :=
limk→∞ cnum(n, k : E) (n ∈ N). By Proposition 2.3, (an)

∞
n=1 is a decreasing se-

quence in [0, 1]. So limn→∞ an exists in [0, 1]. Let a := limn→∞ an. Let ϵ > 0 be
given. There is an n0 ∈ N such that |an0 −a| < ϵ

2 . Since an0 = limk→∞ cnum(n0, k :
E), there is a k0 ∈ N such that |cnum(n0, k0 : E) − an0

| < ϵ
2 . By Propositions 2.3

and 2.4,we have, for n ≥ n0, k ≥ k0,

|cnum(n, k : E)− a| ≤ |cnum(n0, k : E)− a| ≤ |cnum(n0, k0 : E)− a|
= |cnum(n0, k0 : E)− an0 |+ |an0 − a| < ϵ,

showing limn,k→∞ cnum(n, k : E) = a = limn→∞ limk→∞ cnum(n, k : E). Since
a coordinate-wise nonincreasing double sequence (an,k) always has a limit, in any
order, and it is always the inf an,k, we complete the proof. 2

Let E and F be Banach spaces. A bounded k-homogeneous polynomial P has
an extension P ∈ P(kE∗∗ : F ∗∗) to the bidual E∗∗ of E, which is called the Aron-
Berner extension of P in [1]. In fact, P is defined in the following way: We first start
with the complex-valued bounded k-homogeneous polynomial P ∈ P(kE). Let A
be the bounded symmetric k-linear form on E corresponding to P . We can extend
A to an k-linear form A on the bidual E∗∗ in such a way that for each fixed j,
1 ≤ j ≤ k and for each fixed x1, . . . , xj−1 ∈ E and zj+1, . . . , zm ∈ E∗∗, the linear
form

z → A(x1, . . . , xj−1, z, zj+1, . . . , zk), z ∈ E∗∗,

is weak-star continuous. By this weak-star continuity A can be extended to an
k-linear form A on E∗∗, beginning with the last variable and working backwards to
the first. Then the restriction

P (z) = A(z, . . . , z)

is called the Aron-Berner extension of P . In particular, Davie and Gamelin [6]
proved that ∥P∥ = ∥P∥. It is also worth to remark that A is not symmetric in
general. Next, for a vector-valued k-homogeneous polynomial P ∈ P(kE : F ), the
Aron-Berner extension P ∈ P(kE∗∗ : F ∗∗) is defined as follows: Given z ∈ E∗∗ and
w ∈ F ∗,

P (z)(w) = w ◦ P (z).

For x ∈ E, we define δx : E∗ → C by δx(x
∗) = x∗(x) for each x∗ ∈ E∗. Then

δx ∈ E∗∗. Let (xα) be a net in E and x∗∗
0 ∈ E∗∗. We say that (xα) converges

polynomial-star to x∗∗
0 if for every P ∈ P(kE)(k ∈ N), we have P (xα) converges to

P (x∗∗
0 ), where P is the Aron-Berner extension of P.
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Proposition 2.7. For n, k ∈ N and E a Banach space, we have cnum(n, k : E∗∗) ≤
cnum(n, k : E).

Proof. Let ϵ > 0 and P1, . . . , Pn ∈ P(kE : E) with v(Pj) = 1 for all j = 1, . . . , n.
Let P 1, . . . , Pn ∈ P(kE∗∗ : E∗∗) be the Aron-Berner extensions of P1, . . . , Pn,
respectively. By Corollary 2.14 of [5], v(P j) = v(Pj) = 1 for all j = 1, 2, · · · , n. By
the definition of cnum(n, k : E∗∗), there is some (x∗∗

0 , x∗∗∗
0 ) ∈ Π(E∗∗) such that

|x∗∗∗
0 (P j(x

∗∗
0 ))| ≥ cnum(n, k : E∗∗)− ϵ

for all j = 1, 2, · · · , n. From the result of Davie-Gamelin [6] that BE (BE∗ , resp)
is polynomial-star dense in BE∗∗ (BE∗∗∗ , resp), there are nets (xα) in BE and
(x∗

β) in BE∗ such that (xα) converges polynomial-star to x∗∗
0 and (x∗

β) converges
polynomial-star to x∗∗∗

0 . Since Pj ’s are uniformly continuous on BE , there is some
0 < δ < ϵ

3max{∥Pj∥ : j=1,...,n} such that w1, w2 ∈ BE with ∥w1 − w2∥ < δ implies

that ∥Pj(w1)− Pj(w2)∥ < ϵ
3 for all j = 1, 2, · · · , n. Note that

lim
β

x∗∗
0 (x∗

β) = 1, lim
β

lim
α

|x∗
β(Pj(xα))| = |x∗∗∗

0 (P j(x
∗∗
0 ))|.

Thus there are α0 and β0 such that

|x∗
β0
(Pj(xα0))− x∗∗∗

0 (P j(x
∗∗
0 ))| < ϵ

3
, |1− x∗

β0
(xα0)| <

δ2

4
.

By the Bishop-Phelps-Bollobás Theorem ( [4], p7, Theorem 1), there is (z0, z
∗
0) ∈

Π(E) such that

∥z∗0 − x∗
β0
∥ < δ, ∥z0 − xα0∥ < δ.

It follows that for all j = 1, 2, · · · , n,

|z∗0(Pj(z0))− x∗∗∗
0 (P j(x

∗∗
0 ))|

≤ |z∗0(Pj(z0))− x∗
β0
(Pj(z0))|+ |x∗

β0
(Pj(z0))− x∗

β0
(Pj(xα0))|

+ |x∗
β0
(Pj(xα0))− x∗∗∗

0 (P j(x
∗∗
0 ))|

≤ ∥z∗0 − x∗
β0
∥ ∥Pj(z0)∥+ ∥Pj(z0)− Pj(xα0)∥+ |x∗

β0
(Pj(xα0))− x∗∗∗

0 (P j(x
∗∗
0 ))|

< ϵ,

which shows the proposition. 2
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