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ABSTRACT. Parallel to the plank problem, we investigate the numerical plank problem.

1. Introduction

In this paper we assume that E and F' are Banach spaces. Let Sg be the
unit sphere of E. For a natural number k, a mapping P : E — F is called a
continuous k-homogeneous polynomial if there is a continuous k-linear mapping
A:Ex---x E— Fsuch that P(x) = A(z,...,z) forallz € E. Welet P(*E : F)
denote the Banach space of continuous k-homogeneous polynomials from E into
F, endowed with the norm || P|| = sup{||P(x)] : ||| < 1}. If F = R, we denote
P*E :R) = P(*E). See [7] for details about polynomials on an infinite dimensional
Banach space. By a convex body in Euclidean space R™ we shall mean a compact
convex subset K. If u is a unit vector, we shall mean the width of K in the direction
u is the distance between supporting hyperplanes of K orthogonal to u. A plank in
R™ is the region between two parallel hyperplanes. In 1930 Tarski posed the plank
problem:

Tarski’s conjecture. If a convezr body of minimum width 1 is covered by a collec-
tion of planks in R™, then the sum of the widths of these planks is at least 1.

Tarski proved this if the body is an Euclidean ball in 2 or 3 dimensions. This
problem was solved in general by T. Bang in 1951. Given a convex body K, the
relative width of a plank S is the width of S divided by the width of K in the
direction perpendicular to S. Bang asked a more general question:

Question [3]. If a convex body is covered by a union of planks, must the relative
widths of the planks add up to at least 17

The general case of this affine plank problem is still open. If K is a centrally
symmetric convex body, then it may be regarded as the unit ball of some finite
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dimensional normed space. K. Ball proved in [2] that if ¢1,...,t, > 0,t1+- -+, =1
and @ € Sp- (k =1,2,...,n), then there exists an x € Sg with |®(z)| > t) for
all k. Thus the union of planks of relative width summing up to less than 1 can not
cover the unit ball. As a corollary, the formulated result obtained:

Theorem A. If E is a finite dimensional real Banach space and ® € Sg« (k =
1,2,...,n), then there exists an x € Sg such that |®y(x)| > L for all k and the
constant % is best.

It is natural that Theorem A gives rise to the definition of the corresponding
plank constant. Révész and Sarantopoulos [9] studied plank problem for complex
Banach spaces and in particular for the classical L,(u) spaces. Contrary to the
linear case, the author [8] recently study the polynomial plank problem as follows:
For n,k € N and a Banach space F, we denote

c(n,k:E) := sup{c>0:YPy,..., P, € P(*E) with | Pj|| = 1, there exists
x € E with ||z|| =1 such that |Pj(z)] > ¢, forall j =1,...,n}.

We call ¢(n,k : E) the polynomial plank constant of E with order n,k. Clearly
0 < c(n,k : E) < 1. Among other results, we showed that ¢(2,2: H) = 1 for every
real Hilbert space with dim(H) > 2. We also investigated the polynomial plank
constant c¢(n,k : E).

Parallel to the polynomial plank problem, we investigate the numerical polyno-
mial plank problem. Let

I(E)={ (z,2") : x € Sg, 2" € Sp~,x"(x) =1 }.
The numerical radius of P € P(*E : E) is defined by
o(P) i=sup { [¢*(P(a))| : (,2") € LI(E)}.
For n,k € N and a Banach space F/, we denote

enum (n, k¢ E) := sup{c > 0:YPy,..., P, € P(*E : E) with v(P;) = 1,
there exists (z,z*) € II(E) such that |z*(Pj(z))| > ¢, forall j =1,...,n}.

We call ecnum(n, k : E) the numerical polynomial plank constant of E with order
n, k. Clearly 0 < cnum(n, k: F) < 1.

In this paper we show:

-cnum(n, k2 H) = ¢(n,k + 1 : H) for every Hilbert space H. In particular, we
show that cnum(2,1: H) = %, where H is a real Hilbert space with dim(H) > 2.

-ecnum (2, k 2 1) = cnum(2,k 1 1) = 0.

For n,k € N and a Banach space F,

-cnum(n, k+1: E) < cpum(n, k 1 E);

limy, koo cnum (. k ¢ E) = limy, s o0 limg 00 cnum (n, k : E)

= limg o0 limy,—y 00 cnum (1, k : E);
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—Cnum(n, k: E**) S Cnum(n, k: E)

2. Results

Theorem 2.1. Let n,k € N and H be a Hilbert space. Then cpym(n,k : H) =
celn,k+1: H).

Proof. (<): Let Q1,...,Q, € P(**H) with |Q,|| =1 for all j = 1,...,n. By the
Riesz representation theorem for H*, there exist Py, ..., P, € P(*H : H) such that

Qj(z) =<z, Pj(z) > (x€H, Vj).
By definition of enum(n, k : H), given € > 0, there exists zo € Sy such that
|Qj(wo)| = | <o, Pj(x0) > [ 2 cnum(n, k : H) — €, Vj.

Thus ecnum(n,k: H) —e < c(n,k+1: H), so cnum(n, k: H) <c(n,k+1: H).
(>): Let Py,...,P, € P(*H : H) with v(P;) = 1 for all j = 1,2,--- ,n. Let
Q; € P(**1H) be such that

Qj(z) :=<=z,Pj(x) > (zeH, Yj).
Then we have
1@l = supzesy | <@, Pj(x) > [ =v(Pj) =1, Vj.
By definition of ¢(n,k + 1 : H), given € > 0, there exists g € Sy such that
| <o, Pj(wo) > | =|Q;(x0)| = c(n,k+1: H) —¢, Vj.
Thus cnum(n, k: H) > ¢(n,k+1: H) —¢€, so cnum(n,k: H) > c(n,k+1: H). O
Corollary 2.2. We have cpym(2,1: H) = %, where H is a real Hilbert space.

Proof. Theorem 3.2 in [8] asserts that ¢(2,2 : H) = %. Thus cnum(2,1 : H)

c(2,2: H) = % ]
By the definition of cnum (n, k : E), the following is obvious.
Proposition 2.3. Forn,k € N and a Banach space E, we have
Cnum(?’l + 1, k- E) < Cnum(n, k: E)
Proposition 2.4. For n,k € N and a Banach space E, we have
Cnum(?’l, k+1: E) < Cnum(n, k: E)

Proof. Let 0 < e < 1 and Py,...,P, € P(*E : E) with v(P;) = 1 for all j =
1,...,n. We can find (z;,2}) € II(E) such that |z}(P;(x;))| > 1 — €. Note that
v(x}Pj) > 1 — e for all j. Indeed, it follows that

v(zjF;) sup{ |z} (2)| ["(P(2))| : (x,27) € II(E) }
> o (zy)] |25 (P(x;))] = [25(P(x;))]
> 1—e.
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Define Q;(x) := % for all z € E. Then Q; € P(*"1E : E) with v(Q;) =1
for all j = 1,2,--- ,n. We can find (zo,zf) € II(E) such that |2§(Q;(z0))| =
[z (o)l |5 (P (o)) > Cpum(n,k+1: E) — e for all j. We have

v(w;Pj
@) = L) k1) -0
0t [ (o)) e
s> L m k411 E)— ¢
——(Cnum(n, : —€
[ (o))

> (1-e€)(chumnk+1:FE)—e¢),

showing (1 — €)(chum(n, k+1: E) —€) < chum(n, k : E). Since € > 0 was arbitrary,
we have cpym(n, k+1: FE) < chum(n, k: E). O

Theorem 2.5. For the real spaces l1,ls, we have cpum(2,k : 11) = cnum(2,k :
loo) =0 for every k € N.

Proof. First we will show that cnum(2,% : I1) = 0. Let 71, Ty € P(t; : 1) be such
that

1 1 1 1
Tl((xn)) = (5‘%1, 51’1,0,0, .. .), TQ((.’En)) = (5‘%2, —§$2, 0, O, .. )

for (z,) € li. Then v(Z;) = 1 for all j = 1,2. Let ¢ > 0 such that there exists
( (wn)v (an) ) € H(ll) SatiSfying

| < (an), Tj((wy)) >|>c foral j=1,2.

We will show that ¢ = 0.
Case 1: wqwy =0
If wy =0, |wz| =1, then a; =t,as = £1 for some ¢ € [—1,1]. Thus

1
¢ <[ <(an), Ti((wn)) > [ = 5t £ 1] Jwa| =0.

Thus ¢ = 0.

If lwi] = 1,we = 0, then a; = +1,a9 = ¢ for some ¢ € [—1,1]. By a similar
argument as in the above, ¢ = 0.

Case 2: wiws # 0

If wywg > 0, then ay = as =1 or a;y = ag = —1. Thus

c < | < (an), To((wyp)) >|=0.

Thus ¢ = 0.

If wywse < 0, then a; = 1,0 = —1 or a3 = —1, a9 = 1. By a similar argument
as in the above, ¢ = 0, which shows cnum (2, % : I1) = 0. Some similar argument as
in the above shows that cnum (2, % : ) = 0. Therefore, we complete the proof. O
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Proposition 2.6. Suppose E is an infinite dimensional Banach space. Then

nklgloo cnum(n, k: E) = nh_}n;o klggo cnum(n, k: E) = kl;ngo nh_)néo cnum(n, k : E).

Proof. By Proposition 2.4, for each n € N, (cnum(n,k : E))p2, is a de-
creasing sequence in [0,1]. So limg_yeo cnum(n, k : F) exists in [0,1]. Let a, :=
limy 0o cnum(n, k : E) (n € N). By Proposition 2.3, (a,,)22, is a decreasing se-
quence in [0,1]. So lim, o ap exists in [0, 1]. Let a := lim, 00 ap. Let € > 0 be
given. There is an ng € N such that |a,, —a| < §. Since ap, = limg_,oc cnum (no, k :
E), there is a ko € N such that [cnum (no, ko : E) — an,| < §. By Propositions 2.3
and 2.4,we have, for n > ng, k > ko,

cnum(n, k2 E) —a|l < |epum(no, k2 E) — a| < |epum(no, ko : E) — al

= |Cnum(n0ak0 : E) - a’n0| + |a”ﬂ0 - a| <¢,

showing lim, x—co cnum(n, k : E) = a = limy, 00 limg_yoo cnum(n, & : E). Since
a coordinate-wise nonincreasing double sequence (a,, ;) always has a limit, in any
order, and it is always the inf a,, 5, we complete the proof. |

Let E and F be Banach spaces. A bounded k-homogeneous polynomial P has
an extension P € P(*E** : F**) to the bidual E** of E, which is called the Aron-
Berner extension of P in [1]. In fact, P is defined in the following way: We first start
with the complex-valued bounded k-homogeneous polynomial P € P(*E). Let A
be the bounded symmetric k-linear form on E corresponding to P. We can extend
A to an k-linear form A on the bidual E** in such a way that for each fixed j,
1 < j <k and for each fixed z1,...,2;1 € £ and 2j41,...,2m € E*, the linear
form

z —>Z($1,. ey L1525 241, - - .,Zk), z € l;**7

is weak-star continuous. By this weak-star continuity A can be extended to an
k-linear form A on E**, beginning with the last variable and working backwards to
the first. Then the restriction

is called the Aron-Berner extension of P. In particular, Davie and Gamelin [6]
proved that ||P|| = |[P||. It is also worth to remark that A is not symmetric in
general. Next, for a vector-valued k-homogeneous polynomial P € P(*E : F), the
Aron-Berner extension P € P(¥E** : F**) is defined as follows: Given z € E** and
w e F*
P(z)(w) = wo P(z).

For z € E, we define §, : E* — C by §,(z*) = a*(x) for each z* € E*. Then
0, € E**. Let (x,) be a net in F and z3* € E**. We say that (z,) converges

polynomial-star to z3* if for every P € P(*E)(k € N), we have P(z,) converges to
P(z3*), where P is the Aron-Berner extension of P.
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Proposition 2.7. Forn,k € N and E a Banach space, we have cnym(n,k : E**) <
Cnum(n, k: E)

Proof. Let € > 0 and Pi,...,P, € P(*E : E) with v(P;) =1 for all j = 1,...,n.
Let Py,...,P, € P(*E** : E**) be the Aron-Berner extensions of P,...,P,,
respectively. By Corollary 2.14 of [5], v(P;) = v(P;) =1 for all j = 1,2,--- ,n. By
the definition of enum (n, k : E**), there is some (x§*, z§**) € II(E**) such that

257 (Pj(257))| = ecnum(n, k : E™7) — €

for all j = 1,2,--- ,n. From the result of Davie-Gamelin [6] that Bg (Bg+, resp)
is polynomial-star dense in B+« (Bpg+«+, resp), there are nets (z,) in Br and
(z3) in Bp~ such that (z,) converges polynomial-star to zg* and (z%) converges
polynomial-star to xz5**. Since P;’s are uniformly continuous on Bg, there is some
0<d< 3maX{|‘Pj|‘E: =T such that wy,wy € Bg with ||lw; — ws|| < d implies
that || Pj(w1) — Pj(we)|| < § for all j =1,2,--- ,n. Note that

lim 25" (25) = 1, limlim |23 (P; (za))| = 5™ (P (57))I-

Thus there are ag and 5y such that

* EET D) *k € * 62
|$,30(Pj($ao)) — 25" (Pi(7"))] < 3 1 —ﬂfﬁo(ﬂfaoﬂ < 1
By the Bishop-Phelps-Bollobds Theorem ( [4], p7, Theorem 1), there is (zg, z5) €
II(E) such that

126 = 3, | < 0, [l20 = @ || <6

It follows that for all j =1,2,--- | n,

|20 (P (20)) — 25" (Pj(25"))|

< |20 (Pi(20)) — 25, (P (20))| + |25, (P (20)) — 25, (P (%ay))]
+ |2h, (Pi(2a,)) — 257 (Pj(2g"))]
< lzg — 2| 1P (zo)l| + 1P (20) = P (@) | + |2, (P (zag)) — 267" (P (257))]
< €
which shows the proposition. O
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