DOI QR코드

DOI QR Code

Bioethanol Production Using By-product of VPP (Value Prior to Pulping)

VPP (Value Prior to Pulping) 부산물을 이용한 바이오에탄올 생산

  • Lee, Jae-Won (Department of Forest Products and Technology (BK 21 Program), Chonnam National University) ;
  • Kim, Hye-Yun (Department of Environmental Material Science, College of Agriculture & Life Sciences, Seoul National University) ;
  • Jeffries, Thomas W. (Forest Products Laboratory, One Gifford Pinchod Drive) ;
  • Choi, In-Gyu (Department of Environmental Material Science, College of Agriculture & Life Sciences, Seoul National University)
  • 이재원 (전남대학교 농업생명과학대학 산림자원학부) ;
  • 김혜연 (서울대학교 농업생명과학대학 산림과학부) ;
  • ;
  • 최인규 (서울대학교 농업생명과학대학 산림과학부)
  • Received : 2010.06.01
  • Accepted : 2010.07.07
  • Published : 2010.11.25

Abstract

In this study, we evaluated optimal conditions for ethanol production of the spruce hydrolysate (SH) obtained from diethyl oxalate pretreatment. Fermentable sugar concentration in SH was 29.04 g/${\ell}$ except arabinose. Monosaccharides obtained from the oligomer degradation were mainly mannose (39.26 g/${\ell}$) and galactose (12.83 g/${\ell}$). Concentration of 5-HMF and furfural which are inhibitors on ethanol fermentation were 0.09 g/${\ell}$ and 0.04 g/${\ell}$ respectively. Concentration of acetic acid and total phenolic compounds in SH were 1.4 g/${\ell}$ and 2.83 g/${\ell}$. Ethanol production using hydrolysate was 11.7 g/${\ell}$ at optimal pH 6.0 after 48 h. Specific ethanol production was 0.15 (g/(${\ell}^*h$)) at pH 5.0 and 5.5. while that was 0.24 (g/(${\ell}^*h$)) at pH 6.0. Specific ethanol production has difference depend on initial pH for fermentation. Ethanol production was 14.3 g/${\ell}$ after 48 h when xylanase 20 IU was added in SH for degradation of oligomer during fermentation. It implied that ethanol production increased by 22.2% compare with control (without xylanase).

본 연구는 diethyl oxalate 처리로부터 얻어진 가문비나무 가수분해산물을 이용하여 에탄올 생산에 적합한 조건을 탐색하였다. 가문비나무 가수분해산물의 단당류 분석 결과 아라비노오스를 제외한 발효가능한 당 농도 는 29.04 g/${\ell}$이었으며 가수분해산물에 포함된 올리고머로부터 분해된 단당은 대부분 만노오스(39.26 g/${\ell}$)와 갈락토오스(12.83 g/${\ell}$)가 차지하였다. 발효저해물질인 5-HMF, furfural의 농도는 각각 0.09 g/${\ell}$, 0.04 g/${\ell}$, acetic acid는 1.4 g/${\ell}$, total phenolic compounds는 2.83 g/${\ell}$로 나타났다. 가수분해산물을 이용한 에탄올 생산 최적 pH는 6.0으로 발효 48시간 후 11.7 g/${\ell}$의 에탄올을 생산하였다. 시간당 에탄올 생산량은 pH 5.0와 5.5에서 0.15 (g/(${\ell}^*h$))로 나타났으며 pH 6.0에서는 0.24 (g/(${\ell}^*h$))로 나타났다. 시간당 생성된 에탄올 생산량은 에탄올 발효 초기 pH에 따라 차이를 나타냈다. 가수분해산물에 xylanase 20 IU를 첨가하여 올리고머를 분해한 후 발효를 실시한 결과 48시간 후 14.3 g/${\ell}$의 에탄올을 생산하였다. 이것은 xylanase를 첨가하지 않았을 때 보다 에탄올 생산량이 22.2% 증가되었음을 나타내고 있다.

Keywords

References

  1. Clark, T. and K. L. Mackie 1984. Fermentalion in-gibitors in wood hydrolysates derived from the softwood Pinus radiate. J. Chem. Biotechnol. 34: 101-110.
  2. Delgenes, J. P., R. Moletta, and J. M. Navarro. 1996. Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomoiias mobilis, Pichia stipilis, and Candida shehalae. Enzyme and Microbial Technology 19: 220-225. https://doi.org/10.1016/0141-0229(95)00237-5
  3. Haagensen, F, V. I. Skiadas, H. N. Gavala, and B. K. Ahring. 2009. Pre-treatment and ethanol fermentation potential of olive pulp at different dry matter concentrations. Biomass and Bioenergy 33:1643-1651. https://doi.org/10.1016/j.biombioe.2009.08.006
  4. Heer, D. and U. Sauer. 2008. Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain. Microbial Biotechnology 1(6): 497-506. https://doi.org/10.1111/j.1751-7915.2008.00050.x
  5. Jacobs, A., J. Lundqvist, H. Stablbrand, F. Tjerneld, and O. Dahlman. 2002. Characterization of water-soluble hemicellulose from spruce and aspen employing SEM/MALDI mass spectroscopy. Carbohydr. Res. 37: 711-717.
  6. Jensen, J. R., J. E. Morinelly, K. R. Gossen, M. J. Brodeur-Campbell, and D. R. Shonnard 2010. Effects of dilute acid pretreatment conditioas on enzymatic hydrolysis monomer and oligomer sugar yields for aspen, balsam, and switchgrass. Bioresour. Technol. 101: 2317-2325. https://doi.org/10.1016/j.biortech.2009.11.038
  7. Kenealy, W. R., C. J. Houtman, J. Laplaza, T. W. Jeffries, and E. G. Horn. 2006. Pretreatment for converting wood into paper and chemicals. In: Materials, Chemicals and Energy from Forest Biomass. ACS Symposium Series, Vol. 954. Ed Argyropoulos, D.S. ACS, Washington, D.C.
  8. Kenealy, W., E. Horn, M. Davis, R. Swaney, and C. Houtman. 2007. Vapor-phase diethyl oxalate pretreatment of wood chips: Part 2. Release of hem-icellulose carlwhydrates. Holzforschung. 61: 230-235. https://doi.org/10.1515/HF.2007.041
  9. Larsson, S., E. Palmqvist, B. Hahn-Hagerdal, C. Tengborng, K. Stenberg, G. Zacchi, and N. Nilverbrant. 1999. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme and Microbial Technology. 24: 151-159. https://doi.org/10.1016/S0141-0229(98)00101-X
  10. Nigam, J. N. 2001. Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis. J. Biotechnol 87: 17-27. https://doi.org/10.1016/S0168-1656(00)00385-0
  11. Olivia, J. M., M. J. Negro, F. Saez. I. Ballesteros, P. Manzanares, A. Gonzalez, and M. Ballesteros. 2006. Effects of acetic acid, fufural and catechol combinations on ethanol fermentation of Kluyvro-myces marxianus. Process Biochem 41:1223-1228. https://doi.org/10.1016/j.procbio.2005.12.003
  12. Palm, M. and Z. Guido. 2003. Extraction of hemi-cellulose oligosaccharides from spruce using microwave oven or stream treatment. Biomacro-molecules 4: 617-623. https://doi.org/10.1021/bm020112d
  13. Palmqvist, E. and B. Hahn-Hagerdal. 2000. Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour. Technol. 74:17-24. https://doi.org/10.1016/S0960-8524(99)00160-1
  14. Palmqvist, E., H. Grage, N. Q. Meinander, and B. Hahn-Hagerdal. 1999. Main and interaction effects of acetic acid, fufural, p-hydroxybenzoin acid on growth and ethanol procution of yeasts. Biotechnol. Bioeng. 63: 46-55. https://doi.org/10.1002/(SICI)1097-0290(19990405)63:1<46::AID-BIT5>3.0.CO;2-J
  15. Raymond, D. and G. Closset. 2004. Forest products biorefinery: technology for a new future. Solutions! 87: 49-53.
  16. Sasner, P., M. Galbe, and G. Zacchi. 2008. Techno-economic evaluation of bioethanol production from three different Ignocellulosic materials. Biomass and Bioenergy 32: 422-430. https://doi.org/10.1016/j.biombioe.2007.10.014
  17. Scalbert, A., B. Monties, and G. Janin 1989. Tannins in wood: comparison of different estimateion methods. J. Agric. Food. Chem. 37(5): 1324-1329. https://doi.org/10.1021/jf00089a026
  18. Slininger, P. J., R.J. Bothast, M. R. Ladisch, and M. R. Okos. 1990. Optimum pH and temperature conditions for xylose fermentation by Pichia stipitis. Bioresour. Technol. 35: 727-731.
  19. Soderstrom, J., L. Pilcher, M. Galbe, and G. Zacchi. 2003. Combined use of $H_2SO_4$ and $SO_2$ impregnation for steam pretreatment of spruce in ethanol production. Appl. Biochem. Biotechnol. 105-108: 127-140.
  20. Thorp, B. and D. Raymond 2004. Forest biorefinery could open the door to bright future for P & P industry. Paper Age. 120: 16-18.
  21. Wingre. A., M. Galbe, and G. Zacchi. 2008. Energy consideration for a SSF-based softwood ethanol plant. Bioresource Technology 99: 222-231. https://doi.org/10.1016/j.biortech.2006.11.026

Cited by

  1. Mechanical Characteristics and Antibiosis of Sized Fabrics with Bletilla striata vol.1, pp.1, 2012, https://doi.org/10.12654/CRCH.2012.01.1.03