참고문헌
- Jorgensen, H. and L. Olsson. 2006. Production of cellulases by Penicillium brasilianum IBT 20888-Effect of substrate on hydrolytic performance, Enzyme and Microbial Technology 38: 381-390 https://doi.org/10.1016/j.enzmictec.2005.06.018
- Juhaz, T., Z. Szengyel, K. Reczey, M. Siika-Aho, and L. Viikari. 2005. Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources. Process Biochemistry 40: 3519-3525. https://doi.org/10.1016/j.procbio.2005.03.057
- Fritscher, C, R. Messner, and C. P. Kubicek. 1990. Cellobiose metabolism and cellobiohydrlase I biosynthesis by Trichoderma reesei. Experimental Mycology 14: 405-415. https://doi.org/10.1016/0147-5975(90)90063-Y
- Kubicek, C. P., G. Muhlbauer, M. Krotz, E. John, and E. M. Kubicek. 1988. Properties of a conidial bound enzyme system from Trichoderma reesei. General Microbiology 134: 1215-1222.
- Morikawa, Y., T. Ohashi, O. Mantani, and H. Okada. 1995. Cellulase induction by lactose in Trichoderma reesei PC-3-7. Applied Biochemistry and Biotechnology. 44: 106-111.
- Mach, R. L., B. Seiboth, A. Myasnikov, R. Gonzalez, J. Strauss, and A. M. Harkki. 1995. The Bgl1 gene of Trichoderma reesei QM9414 encodes an extracellular, cellulose inducible beta-glucosidase involved in cellulase induction by sophorose. Molecular Biology 16: 687-697.
- 이영민, 최두열, 김현정, 윤정준, 김영숙. 2008. 침엽수 혼합목분에서 배양조건을 달리한 Fomitopsis palustris의 균체외 효소 활성 변화, Journal of Forest Science 24: 53-59.
- 최두열, 이영민, 김영균, 윤정준, 김영숙. 2007. 국내산 침엽수 목분의 진탕배양에서 나타난 Fomitopsis palustris의 효소 활성 및 셀룰로오즈 분해, 목재공학 35:91-99.
- 윤정준, 이영민, 최두열, 김영균, 김영숙. 2007. 볏짚 분해과정 중에 생산하는 Fomitopsis palustris 균체 외 Xylanase의 분리정제 및 효소특성, 목재공학 35: 159-165.
- Yoon, J. J, C. J. Cha, Y. S. Kim, D. W. Son, and Y. K. Kim. 2007. The brown-rot basidiomycete Fomitopsis palustris has the endo-glucanases capable of degrading microcrystalline cellulose, Journal of Microbiology and Biotechnology 17: 800-805.
- Kim, H. J., M. J. Cho, Y. H. Kim, K. Shin, Y. K. Kim, T. J. Kim, and Y. S. Kim. 2010. Effect of carbon source on the hydrolytic ability of the enzyme from Fomitopsis pinicola for lignocellulosic biomass, Journal of the Korean Wood Science and Technology (accepted).
- Somogi, M. 1959. Exacerbation of diabetes by excess of insulin action, American Journal of Medicine 26: 169-191. https://doi.org/10.1016/0002-9343(59)90307-9
- Bradford, M. M. 1967. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254.
- Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
- Ghose, T. K. 1987. Measurement of cellulose activity. Pure and Applied Chemistry 59: 257-268. https://doi.org/10.1351/pac198759020257
- Segal, L., J. J. Greely, A. E. Martin, Jr., and C. M. Conrad. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Textile Research Journal 29: 786-994. https://doi.org/10.1177/004051755902901003
- Juhasz, T., Z. Szengyel, N. Szijarto, and K. Reczey. 2004. Effect of pH on the cellulase production of Trichoderma reesei RUT C30. Applied Biochemistry and Biotechnology 113: 201-211. https://doi.org/10.1385/ABAB:113:1-3:201
- Yoon, J. J. and Y. K. Kim. 2005. Degradation of crystalline cellulose by the brown-rot basidiomycete Fomitopsis palustris. Journal of Microbiology 43: 487-492.
- Cohen, R., M. R. Suzuki, and K. E. Hemmel. 2005. Processive endoglucanase active in crystalline cellulose hydrolysis by the brown rot basidiomycete Gleophyllum trabeum, Applied and Environmental Microbiology 71: 2412-2417. https://doi.org/10.1128/AEM.71.5.2412-2417.2005
- Mizutani, C., K. Sethumadhavan, P. Howley, and N. Bertoniere. 2002. Effect of nonionic surfactant on Trichoderma cellulase treatments of regenerated cellulose and cotton yarns, Cellulose 9: 83-89. https://doi.org/10.1023/A:1015821815568
- Kumar, R. and C. E. Wyman. 2009. Effect of additives on the digestibility of corn stover solids following pretreatment by leading technologies, Biotechnology and Bioengineering 102(6), 1544-1556 https://doi.org/10.1002/bit.22203
- Zhang, Y-H. P. and L. R. Lynd. 2004. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems. Biotechnology and Bioengineering 88: 797-824. https://doi.org/10.1002/bit.20282
- Al-Zuhair, S.. 2008. The effect of crystallinity of cellulose on the rate of reducing sugars production by heterogeneous enzymatic hydrolysis. Bioresource Technology 99: 4078-4085. https://doi.org/10.1016/j.biortech.2007.09.003
- Pedersen, M. and A. S. Meyer. 2009. Influence of substrate particle size and wet oxidation of physical surface structures and enzymatic hydrolysis of wheat straw. Biotechnology Progress 25: 399-408. https://doi.org/10.1002/btpr.141
- Chandra, R., S. Ewanick, C. Hsieh, and J. N. Saddler. 2008. The characterization of pretreated lignocellulosic substrates prior to enzymatic hydrolysis, Part 1: A modified simons' staining technique, Biotechnology Progress 24: 1178-1185. https://doi.org/10.1002/btpr.33
피인용 문헌
- Analysis of Mycological Characteristics and Lignocellulose Degradation of Gyrodontium sacchari vol.43, pp.4, 2015, https://doi.org/10.4489/KJM.2015.43.4.239