References
- G.S. Asanov, Finsleroid-Finsler spaces of positive-definite and relativistic types, Rep. Math. Phys. 58(2006), 275-300. https://doi.org/10.1016/S0034-4877(06)80053-4
- G.S. Asanov, Finsleroid-Finsler space and geodesic spray coefficient, Publ. Math. Debrecen 71(2007), 397-412.
- D. Bao, On two curvature-driven problems in Riemann-Finsler geometry, Adv. Stud. Pure Math. 48, Math. Soc. Japan. 19-71 Tokyo, 2007.
- R. Bryant, Finsler structures on the 2-sphere satisfying K = 1, Contemp. Math. 196(1996), 27-41.
- S.S. Chern and Z. Shen, Riemannian-Finsler geometry, Nankai Tracts in Math. World Scientific, 2005.
- M.K. Gupta and P.N. Pandey, On hypersurface of a Finsler space with a special metric, Acta Math. Hungar. 120(2008), 165-177. https://doi.org/10.1007/s10474-007-7128-9
- H. Izumi, Conformal transformations Finsler spaces II. An h-conformally flat Finsler space, Tensor (N.S.) 34(1980), 337-359.
- M. Matsumoto, On Finsler spaces with Randers metric and special forms of special tensors, J. Math. Kyoto Univ. 14(1974), 477-498. https://doi.org/10.1215/kjm/1250523171
- V.S. Matveev, "All regular Landsber metris are Berwald" by Z. I. Szabo, Preprint (2008).
-
B.N. Prasad, On the torsion tensors
$R_{hjk}$ and$P_{hjk}$ of Finsler spaces with a metric ds =$(g_{ij}(dx)dx^idx^j)^1/2+b_i(x,y)dx^i$ , Indian J. Pure Appl. Math. 21(1990), 27-39. - Z. I. Szabo, All regular Landsber metris are Berwald, Ann. Global. Anal. Geom. 38(2008), 381-386.
-
Z. Shen, On Landsberg
$({\alpha},{\beta})$ metrics, Preprint (2006).