Dynamic Stiffness of the Scaled Boundary Finite Element Method for Non-Homogeneous Elastic Space

비동질 탄성 무한공간에 대한 비례경계유한요소법의 동적강도행렬

  • 이계희 (목포해양대학교 해양시스템공학부)
  • Received : 2009.11.14
  • Accepted : 2010.01.04
  • Published : 2010.04.30

Abstract

In this paper, the dynamic stiffness of scaled boundary finite element method(SBFEM) was analytically derived to represent the non-homogeneous space. The non-homogeneous parameters were introduced as an expotential value of power function which denoted the non-homogeneous properties of analysis domain. The dynamic stiffness of analysis domain was asymptotically expanded in frequency domain, and the coefficients of polynomial series were determined to satify the radiational condition. To verify the derived dynamic stiffness of domain, the numerical analysis of the typical problems which have the analytical solution were performed as various non-homogeneous parameters. As results, the derived dynamic stiffness adequatlly represent the features of the non-homogeneous space.

본 논문에서는 비동질 탄성무한공간에 대한 비례경계유한요소법의 동적강도행렬을 해석적으로 유도하였다. 해석영역의 비동질성은 비동질파라메터를 지수로 하는 멱함수로 고려하였다. 동적강도행렬은 진동수영역에서 다항식으로 점근전개한 후, 방사조건을 만족시키도록 하여 각 다항식의 계수를 구하는 과정을 통하여 유도되었다. 얻어진 동적강도행렬의 타당성을 검증하기 위해 정확해가 알려져 있는 대표적인 문제에 대하여 비동질파라메터의 값을 변화시키면서 수치해석을 수행하였다. 그 결과 유도된 동적강도행렬이 비동질공간에 대한 특성을 적절하게 반영하는 것으로 나타났다.

Keywords

References

  1. 김재민, 윤정방, 김두기 (2000) 유한요소와 무한요소를 사용한 2차원 선형 지반-구조물계의 지진응답해석법, 한국전산구조공학회 논문집, 13(2), pp.231-244.
  2. 윤정방, 서춘교, 김재민 (2007) 3차원 지반-구조물 상호작용 해석을 위한 입방형무한요소, 한국전산구조공학회 논문집, 20(1), pp.39-50.
  3. 이계희 (2007) 비동질 반무한 평면에서의 비례경계요소법, 전산구조공학회 논문집, 20(2), pp.127-136.
  4. Deeks, A.J., Cheng, L. (2003) Potential Flow Around Obstacles using the Scaled Boundary Finite-Element Method. International Journal for Numerical Methods in Fluids, V41(7), pp.721-741.
  5. Deeks, A.J., Wolf, J.P. (2002a) A Virtual Work Derivation of the Scaled Boundary Finite Element Method for Elastostatic, Computational Mechanics, 28, pp.489-504. https://doi.org/10.1007/s00466-002-0314-2
  6. Deeks, A.J., Wolf, J.P. (2002b) Semi-Analytical Analysis of Unbounded Two-Dimensional Domain, Int. J. of Numerical and Analytical Methods in Geomechanics, 26, pp.1031-1057. https://doi.org/10.1002/nag.232
  7. Doherty, J.P., Deeks, A.J. (2003) Scaled Finite Element Analysis of a Non-Homogeneous Elastic Half Space, Int. J. for Numerical Methods in Engineering, 57, pp.955-973. https://doi.org/10.1002/nme.706
  8. Doherty, J.P., Deeks, A.J. (2005) Adaptive Coupling of the Finite Element and Scaled Boundary Finite-Element Methods for Non-Linear Analysis of Unbounded Medi, Computer & Geotechnics, 32, pp.436-444. https://doi.org/10.1016/j.compgeo.2005.07.001
  9. Ekevid, T., Lane, H., Wiberg, N.E. (2006), Adaptive Solid Wave Propagation Influences of Boundary Conditions in High-Speed Train Applications, Computational Methods in Applied Mechanics and Engineering, 195, pp.236-250. https://doi.org/10.1016/j.cma.2004.12.030
  10. Gu, Y.T., Liu, G.R. (2001), A Coupled Element Free Galerkin Boundary Element Method for Stress Analysis of Two Dimensional Solids, Computational Methods in Applied Mechanics and Engineering, 190, pp.4405-4419. https://doi.org/10.1016/S0045-7825(00)00324-8
  11. Hassanen, M., El-Hamalawi, A. (2007) Two-Dimensional Development of the Dynamic Coupled Consolidation Scaled Boundary Finite-Element Method for Fully Saturated Soils, Soil Dynamics & Earthquake Engineering, 27, pp.153-165. https://doi.org/10.1016/j.soildyn.2006.05.003
  12. Kireev, O., Mertens, T., Bouillard, Ph. (2006) A Coupled EFGM–CIE Method for Acoustic Radiation, Computers and Structures, 84, pp.2092-2099. https://doi.org/10.1016/j.compstruc.2006.04.011
  13. Lee, G.H., Deeks, A.J. (2008) Infinite Element for the Scaled Boundary Analysis of Initial Valued Non-Homogeneous Elastic Half Space, 한국전산구조공학회 논문집, 21(2), pp.199-208.
  14. Wolf, John P. (2003) The Scaled Boundary Finite Element Method, John Wiey & Sons.
  15. Wolf, John P., Song, Chongmin (1996) Finite-Element Modelling of Unbounded Medi, John Wiley & Sons.
  16. Yang, Z. (2006) Fully Automatic Modelling of Mixed-Mode Crack Propagation using Scaled Boundary Finite Element Method, Engineering Fracture Mechanics, 73, pp.1711-1731. https://doi.org/10.1016/j.engfracmech.2006.02.004