Optimal Strategy for Ethanol Production in Repeated Fed-batch Operation Using Flocculent Sacchromyces cerevisiae

응집성 Sacchromyces cerevisiae 를 이용한 반복 유가식 ethanol 생산에서의 최적 운전전략

  • Lee, Sang-Eun (Department of Biotechnology, Chungju National University) ;
  • Yeon, Ji-Hyeon (Department of Biotechnology, Chungju National University) ;
  • Seo, Yong-Chang (Division of Biomaterials Engineering, Kangwon National University) ;
  • Kang, Do-Hyung (Korea Ocean Research & Development Institute) ;
  • Lee, Hyeon-Yong (Division of Biomaterials Engineering, Kangwon National University) ;
  • Jung, Kyung-Hwan (Department of Biotechnology, Chungju National University)
  • 이상은 (충주대학교 바이오산업학과) ;
  • 연지현 (충주대학교 바이오산업학과) ;
  • 서용창 (강원대학교 생물소재공학) ;
  • 강도형 (한국해양연구원) ;
  • 이현용 (강원대학교 생물소재공학) ;
  • 정경환 (충주대학교 바이오산업학과)
  • Received : 2010.03.21
  • Accepted : 2010.04.23
  • Published : 2010.04.28

Abstract

We investigated the optimal strategy for ethanol production using flocculent Sacchromyces cerevisiae ATCC 96581. Considering the characteristic of flocculent yeast, a repeated fed-batch ethanol fermentation was designed, in which non-sterile glucose powder was fed every 12 hours and, after cell flocculation, new feeding medium was exchanged every 24 or 36 hours. We particularly compared this fermentation process with those when cell flocculation was not carried out. Finally, the maximal total ethanol production was 825 g-ethanol during 120 hours, in which the time interval of withdrawal-fill of feeding medium was 24 hours and cell flocculation was carried out.

응집성 효모인 S. cerevisiae ATCC 96581를 이용한 최적의 에탄올 생산 공정 전략에 대하여 연구하였다. 효모의 특성을 고려하여, 효모 응집공정이 있는 반복 유가식 공정을 설계하였고, 이때 비멸균 포도당 분말을 매 12시간 마다 첨가하였고, 새로운 feeding medium을 24시간 혹은 36시간마다 세포 응집 후 교체 하였다. 이때 효모 응집이 없는 반복 유가식 공정과 비교 검토하였다. 최종적으로 24시간마다 세포를 응집시키고 상층배지를 제거하고 새로운 배지를 넣으면서 반복 유가식 에탄올 생산을 하는 것이 최적의 조건임을 알 수 있었고, 이때 120시간 동안 825 g의 에탄올을 생산 할 수 있었다.

Keywords

References

  1. Sanchez, O. J. and C. A. Cardona (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour. Technol. 99: 5270-5295. https://doi.org/10.1016/j.biortech.2007.11.013
  2. Sassner, P., M. Galbe, and G. Zacchi (2008) Technoeconomic evaluation of bioethanol production from three different lignocellulosic materials. Biomass Bioenergy 32: 422-430. https://doi.org/10.1016/j.biombioe.2007.10.014
  3. Taherzadeh, M. J., C. Niklasson, and G. Lidén (1999) Conversion of dilute-acid hydrolyzates of spruce and birch to ethanol by fed-batch fermentation. Bioresour. Technol. 69: 59-66. https://doi.org/10.1016/S0960-8524(98)00169-2
  4. Alfenore, S, X. Cameleyre, L. Benbadis, C. Bideaux,J. L. Uribelarrea, G. Goma, C. Molina-Jouve, and S. E. Guillouet (2004) Aeration strategy: a need for very high ethanol performance in Saccharomyces cerevisiae fed-batch process. Appl. Microbiol. Biotechnol. 63: 537-542. https://doi.org/10.1007/s00253-003-1393-5
  5. Ozmihci, S. and F. Kargi (2007) Ethanol fermentation of cheese whey powder solution by repeated fed-batch operation. Enzyme Microb. Technol. 41: 169-174. https://doi.org/10.1016/j.enzmictec.2006.12.016
  6. Morimura, S., Z. Y. Ling, and K. Kida (1997) Ethanol production by repeated-batch fermentation at high temperature in a molasses medium containing a high concentration of total sugar by a thermotolerant flocculating yeast with improved salt-tolerance. J. Ferment. Bioeng. 83: 271-274. https://doi.org/10.1016/S0922-338X(97)80991-9
  7. Warren, R. K., D. G. Macdonald, and G. A. Hill (1994) The design and costing of a continuous ethanol process using wheat and cell recycle fermentation. Bioresour. Technol. 47: 121-129. https://doi.org/10.1016/0960-8524(94)90109-0
  8. Nishiwaki, A. and I. J. Dunn (1999) Analysis of the performance of a two-stage fermentor with cell recycle for continuous ethanol production using different kinetic models. Biochem. Eng. J. 4: 37-44. https://doi.org/10.1016/S1369-703X(99)00029-7
  9. Najafpour, G., H. Younesi, and K. S. K. Ismail (2004) Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae. Bioresour. Technol. 92: 251-260. https://doi.org/10.1016/j.biortech.2003.09.009
  10. Swain, M. R., S. Kar, A. K. Sahoo, and R. C. Ray (2007), Ethanol fermentation of mahula (Madhuca latifolia L.) flowers using free and immobilized yeast Saccharomyces cerevisiae. Microbiol. Res. 162: 93-98. https://doi.org/10.1016/j.micres.2006.01.009
  11. Andrietta, S. R., C. Steckelberg, and M. da G. S. Andrietta (2008) Study of flocculent yeast performance in tower reactors for bioethanol production in a continuous fermentation process with no cell recycling. Bioresour. Technol. 99: 3002-3008. https://doi.org/10.1016/j.biortech.2007.06.037
  12. Zhao, X. Q. and F. W. Bai (2009) Yeast flocculation: New story in fuel ethanol production. Biotechnol. Adv. 27: 849-856. https://doi.org/10.1016/j.biotechadv.2009.06.006
  13. Baptista, C. M. S. G., J. M. A. Coias, A. C. M. Oliveira, N. M. C. Oliveira, J. M. S. Rocha, M. J. Dempsey, K. C. Lannigan, and P. S. Benson (2006) Natural immobilisation of microorganisms for continuous ethanol production. Enzyme Microb. Technol. 40: 127-131. https://doi.org/10.1016/j.enzmictec.2005.12.025
  14. Ma, K., M. Wakisaka, K. Sakai, and Y. Shirai (2009) Flocculation characteristics of an isolated mutant flocculent Saccharomyces cerevisiae strain and its application for fuel ethanol production from kitchen refuse. Bioresour. Technol. 100: 2289-2292. https://doi.org/10.1016/j.biortech.2008.11.010
  15. Huanga, H. -J., S. Ramaswamya, U. W. Tschirner, and B. V. Ramaraob (2008) A review of separation technologies in current and future biorefineries. Sep. Purif. Technol. 62: 1-21. https://doi.org/10.1016/j.seppur.2007.12.011
  16. Bai, F. W., L. J. Chen, W. A. Anderson, and M. Moo-Young (2004) Parameter oscillations in very high gravity medium continuous ethanol fermentation and their attenuation on multi-stage packed column bioreactor system. Biotechnol. Bioeng. 88: 558-566. https://doi.org/10.1002/bit.20221
  17. Bai, F. W., L. J. Chen, Z. Zhang, W. A. Anderson, and M. Moo-Young (2004) Continuous ethanol production and evaluation of yeast cell lysis and viability loss under very high gravity medium conditions. J. Biotechnol. 110: 287-293. https://doi.org/10.1016/j.jbiotec.2004.01.017
  18. Thomas, K. C., S. H. Hynes, A. M. Jones, and W. M. Ingledew (1993) Production of fuel alcohol from wheat by VHG technology. Appl. Biochem. Biotechnol. 43: 211-226. https://doi.org/10.1007/BF02916454
  19. Seo, H. -B., S. S. Kim, H. -Y. Lee, and K. -H. Jung (2009) High-level production of ethanol during fed-batch ethanol fermentation with a controlled aeration rate and non-sterile glucose powder feeding of Saccharomyces cerevisiae. Biotechnol. Bioprocess Eng. 14: 591-598. https://doi.org/10.1007/s12257-008-0274-2
  20. Linden, T., J. Peetre, and B. Hahn-Hägerdal (1992) Isolation and characterization of acetic acid-tolerant galactose-fermenting strains of Saccharomyces cerevisiae from a spent sulfite liquor fermentation plant. Appl. Environ. Microbiol. 58: 1661-1669.
  21. Martіn, C. and L. J. Jönsson (2003) Comparison of the resistance of industrial and laboratory strains of Saccharomyces and Zygosaccharomyces to lignocellulosederived fermentation inhibitors. Enzyme Microb. Technol. 32: 386-395. https://doi.org/10.1016/S0141-0229(02)00310-1
  22. Brandberg, T., C. J. Franzén, and L. Gustafsson (2004) The fermentation performance of nine strains of Saccharomyces cerevisiae in batch and fed-batch cultures in dilute-acid wood hydrolysate. J. Biosci. Bioeng. 98: 122-125. https://doi.org/10.1016/S1389-1723(04)70252-2
  23. Seo, H. -B., J. -H. Yeon, M. H. Jeong, D. H. Kang, H. -Y. Lee, and K. -H. Jung (2009) Aeration alleviates ethanol inhibition and glycerol production during fed-batch ethanol fermentation. Biotechnol. Bioprocess Eng. 14: 599-605. https://doi.org/10.1007/s12257-009-0066-3
  24. Seo, H. -B., J. -H. Yeon, M. H. Jeong, D. H. Kang, H. -Y. Lee, and K. -H. Jung (2010) Long-term repeated fed-batch ethanol production in aerated condition. Biotechnol. Bioprocess Eng. 15: 324-328. https://doi.org/10.1007/s12257-009-0171-3
  25. Lee, S. -E., H. -B. Seo, M. C. Kwon, H. -Y. Lee, and K. -H. Jung (2010) Operational strategy for increasing ethanol production in repeated fed-batch ethanol fermentation using Saccharomyces cerevisiae. KSBB J. 25: 187-192.
  26. Chaplin, M. F. and J. F. Kennedy (1986) Carbohydrate analysis; A Practical Approach. p. 3. IRL press, Oxford, UK.