Abstract
This paper presents the design of optimal fuzzy classifier for human detection by using genetic algorithms, one of the best-known meta-heuristic search methods. For this purpose, encoding scheme to search the optimal sequential intersection points between adjacent fuzzy membership functions is originally presented for the fuzzy classifier design for HOG (Histograms of Oriented Gradient) descriptors. The intersection points are sequentially encoded in the proposed encoding scheme to reduce the redundancy of search space occurred in the combinational problem. Furthermore, the fitness function is modified with the true-positive and true-negative of the confusion matrix instead of the total success rate. Experimental results show that the two proposed approaches give superior performance in HOG datasets.