Abstract
This study used the keypoint observed simultaneously on two images and on twodimensional intensity image data, which was obtained along with the two point clouds data that were approached for automatic focus among points on terrestrial LiDAR data, and selected matching point through SIFT algorithm. Also, for matching error diploid, RANSAC algorithm was applied to improve the accuracy of focus. As calculating the degree of three-dimensional rotating transformation, which is the transformation-type parameters between two points, and also the moving amounts of vertical/horizontal, the result was compared with the existing result by hand. As testing the building of College of Science at Konkuk University, the difference of the transformation parameters between the one through automatic matching and the one by hand showed 0.011m, 0.008m, and 0.052m in X, Y, Z directions, which concluded to be used as the data for automatic focus.
본 연구는 지상라이다 자료의 점군간 자동정합을 위해 인접한 두 점군 자료와 함께 획득되는 2차원의 강도영상 자료로부터, 2개 영상에서 동시에 관측되는 특징점들을 이용하여 SIFT 알고리즘에 의해 공액점을 선정하였다. 또한 매칭 오류점 배제를 위해 RANSAC 알고리즘을 적용하여 정합 정확도 향상을 도모하였다. 두 점군간의 변환식 매개변수인 3차원 회전변환 각과 수직/수평 이동량을 계산, 그 결과를 기존 수작업에 의한 결과와 비교하였다. 건국대학교 이과대학 건물을 대상으로 실험한 결과, 자동매칭을 통한 변환매개변수와 수작업으로 한 변환매개변수의 차이는 X, Y, Z, 방향으로 각각 0.011m, 0.008m, 0.052m로서 자동정합 자료의 활용이 가능하다고 판단하였다.