Preparation and Properties of Poly(dimethylsiloxane-co-N-phenylsiloxazane) Modified Acrylate Resin

Poly(dimethylsiloxane-co-N-phenylsiloxazane) 변성 Acrylate Resin의 제조와 그 특성

  • Kang, Doo-Whan (Department of Polymer Science & Engineering, College of Engineering, Dankook University) ;
  • Kum, Min-Woo (Department of Polymer Science & Engineering, College of Engineering, Dankook University) ;
  • Yoon, Jae-Seon (Department of Polymer Science & Engineering, College of Engineering, Dankook University)
  • 강두환 (단국대학교 공과대학 고분자시스템공학과) ;
  • 금민우 (단국대학교 공과대학 고분자시스템공학과) ;
  • 윤재선 (단국대학교 공과대학 고분자시스템공학과)
  • Received : 2009.11.13
  • Accepted : 2010.01.07
  • Published : 2010.03.25

Abstract

We first synthesized N-phenylcyclotrisiloxazane ($D_3^{NPh}$) through a cyclization of $\alpha$,$\omega$- dichlorohexamethyltrisiloxane with aniline and prepared poly(dimethylsiloxane-co-N-phenylsiloxazane) copolymer (PDMS-NPSOX) by a ring opening copolymerization of them with hexamethylcyclotrisiloxane $D_3$. An acrylate monomer modified with PDMS-NPSOX was synthesized by using chloroethyl methacrylate and copolymerized with methylmethacrylate (MMA) and n-butylacrylate. The composition of the copolymer was chosen to control their glass transition temperature ($T_g$) to 25 $^{\circ}C$. By changing the comonomer from PDMS to PDMS-NPSOX, $T_g$ and adhesive strength of the copolymer were increased from 20 to 25 $^{\circ}C$ and from 1.76 to 2.23 N/cm, respectively.

$\alpha$,$\omega$-Dichlorohexamethyltrisiloxane의 aniline과 고리 반응으로부터 N-phenylcyclotrisiloxazane($D_3^{NPh}$)을 합성하고 이를 hexamethylcyclotrisiloxane$D_3$과 이온 공중합시켜 poly(dimethylsiloxane-co-N-phenylsiloxazane)공중합체(PDMS-NPSOX)를 제조하였다. 이를 chloroethyl methacryalte에 도입하여 PDMS-NPSOX unit가 도입된 아크릴 단량체를 제조하였으며, 이를 MMA 및 n-butyl acrylate와 공중합시켜 PDMS-NPSOX가 도입된 삼원 아크릴 공중합체를 제조하고, 그 특성을 조사하였다. 단량체 조성은 생성 공중합체의 $T_g$가 25 $^{\circ}C$가 되도록 선택하여 공중합시켰다. 공중합체에서 PDMS만 도입된 경우 $T_g$가 20 $^{\circ}C$인데 비하여 PDMS-NPSOX unit이 도입됨에 따라 25 $^{\circ}C$로 증가되었으며 접착력도 1.76 N/cm에서 2.23 N/cm로 증가되었다.

Keywords

References

  1. A. Asakawa, M. Yamauchi, S. Masuda, and M. Unoki, "Composition for Fluororesin Powder Materials with Low Gloss and Weather-Resistance", PCT Int. Appl., WO 029369A1 (2003).
  2. T. Yoshida, Toso Gijutsu, 40, 141 (2001).
  3. H. Matsuzawa and S. Kudo, "Ultraviolet-Curable Resin Composition, Ultraviolet-Curable Coating Material, and Coated Article", PCT Int. Appl., WO 095686A1 (2006).
  4. I. Nakamoto, Kogyo Toso, 201, 48 (2006).
  5. G. Zheng, Shanghai Tuliso, 43, 36 (2005).
  6. K. Suzuki, T. Shimizu, M. Yamagoe, and T. Sugisaki, U.S. Pat. 5,219,560 (1993).
  7. M. Lin, F. Chae, A. Guyot, J. J. Putaux, and B. Lami, Polymer, 46, 1331 (2005). https://doi.org/10.1016/j.polymer.2004.11.063
  8. Kanegafuchi Kagaku Kogyo Co., U.S. Pat. 4,975488 (1990).
  9. V. L. Rao and G. M. Babu, Eur. Polym. J., 26, 227 (1990). https://doi.org/10.1016/0014-3057(90)90193-8
  10. G. L. Witucki, J. Coat. Technol., 65, 57 (1993).
  11. B. J. Aylete, Organometallic Chem., 3, 151 (1988).
  12. E. W. Bennet, U.S. Pat. 3,646,090 (1972).
  13. L. W. Bread and R. L. Elliot, Inorg. Chem., 3, 1622 (1964). https://doi.org/10.1021/ic50021a033
  14. D. W. Kang, J. Kor. Soc. Text. Eng. Chem., 21, 61 (1984).
  15. M. Schwartz and R. Baumstrark, Waterbased Acrylates for Decorative Coating; Vincentz Verlag, Hannover, pp 17-21 (2001).