MIMO 검파를 위한 MMSE 기반의 향상된 SE SD 알고리듬

Improved SE SD Algorithm based on MMSE for MIMO Detection

  • 조혜민 (LG전자 MC 사업본부) ;
  • 박순철 (경북대학교 전자공학부 무선통신연구실) ;
  • 한동석 (경북대학교 전자공학부 무선통신연구실)
  • 투고 : 2010.02.18
  • 심사 : 2010.03.08
  • 발행 : 2010.03.31

초록

MIMO(Multi-input Multi-output) 시스템은 안테나 개수에 비례하여 높은 데이터 전송량을 제공하지만 복호 과정에서 매우 높은 연산량을 필요로 한다. 높은 연산량을 극복하고 보다 정확한 신호추정을 위해 제안된 것이 SD(Sphere Decoding) 알고리듬이다. 본 논문에서는 기존의 SE SD 알고리듬에 MMSE(Minimum Mean Square Error)와 Euclid 거리 기준을 적용하여 연산량은 증가시키지 않으면서 검파 성능을 향상시키는 MIMO 검파 알고 리듬을 제안한다.

Multi-input multi-output (MIMO) systems are used to improve the transmission rate in proportion to the number of antennas. However, their computational complexity is very high for the detection in the receiver. The sphere decoding (SD) is a detection algorithm with reduced complexity. In this paper, an improved Schnorr-Euchner SD (SE SD) is proposed based on the minimum mean square error (MMSE) and the Euclidean distance criteria without additional complexity.

키워드

참고문헌

  1. A. Paulraj, R. Nabar, and D. Gore, Introduction to Space-Time Wireless Communications New York: Cambridge Univ. Press, 2003.
  2. P. Wolniansky, G. Foschini, G. Golden, and R. Valenzuela, "V-BLAST: An architecture for realizing very high data rates over the rich scattering wireless channel," in Proc. ISSSE, Sept. 1998.
  3. U. Fincke and M. Pohst, "Improved methods for calculating vectors of short length in a lattice, including a complexity analysis," Math. Comput., Vol.44, pp.463-471, Apr. 1985. https://doi.org/10.1090/S0025-5718-1985-0777278-8
  4. E. Viterbo and J. Boutros, "A universal lattice code decoder for fading channels," IEEE Trans. Inf. Theory, Vol.45, No.5, pp.1639-1642, Jul. 1999. https://doi.org/10.1109/18.771234
  5. A. M. Chan and I. Lee, "A new reduced-complexity sphere decoder for multiple antenna systems," in IEEE Int. Conf. Communications, Vol.1, 2002, pp.460-464.
  6. B. Hassibi and H. Vikalo "On sphere decoding algorithm. I. Expected complexity," IEEE Trans. Signal Process., Vol.53, pp.2806, Aug. 2005.
  7. C. P. Schnorr and M. Euchner, "Lattice basis reduction: Improved practical algorithms and solving subset sum problems," Math. Programming, Vol.66, pp.181-191, 1994. https://doi.org/10.1007/BF01581144