References
- Elber, G. and Kim, M. S., "Geometric Constraint Solver using Multivariate Rational Spline Functions", Proc of the Sixth ACM Symposium on Solid Modeling and Applications, pp. 1-10, 2001.
- Lennerz, C. and Schomer, E., "Efficient Distance Computation for Quadric Curves and Surfaces", Proc. of Geometric Modeling and Processing, pp. 60-69, 2002.
- Sohn, K. A., Juttler, B., Kim, M. S. and Wang, W., "Computing Distances between Surfaces using Line Geometry", Pacific Conference on Computer Graphics and Applications, pp. 236-245, 2002.
- Kim, K. J., "Minimum Distance between a Canal Surface and a Simple Surface", Computer-Aided DeSign, Vol. 35, No. 10, pp. 871-879, 2003. https://doi.org/10.1016/S0010-4485(02)00123-9
- Chen, X. D., Yong, J. H., Zheng, G. Q., Paul, J. C. and Sun, J. G., "Computing Minimum Distance between Two Implicit Algebraic Surfaces", Computer- Aided Design, Vol. 38, No. 10, pp. 1053-1061, 2006. https://doi.org/10.1016/j.cad.2006.04.012
- Chen, X. D., Chen, L., Wang, Y., Xu, G. and Yong, J. H., "Computing the Minimum Distance between Bezier Curves", Journal of Computational and Applied Mathematics, Vol. 230, No.1, pp. 294-310, 2009.
- Rabl, M. and Juttler, B., "Fast Distance Computation Using Quadratically Supported Surfaces", Proc of Computational Kinematics (CK 2009)", pp. 141-148, 2009.
- Juttler, B., "Bounding the Hausdorff Distance of Implicitly Defined and/or Parametric Curves", Mathematical Methods in CAGD: Oslo 2000, pp. 223- 232, 2001.
- Cignoni, P., Rocchini, C. and Scopigno, "Metro: Measuring Error on Simplified Surfaces", Computer Graphics Forum, Vol. 17, No.2, pp. 167-174,1998. https://doi.org/10.1111/1467-8659.00236
- Aspert, N., Santana, D. and Ebranhimi, T., "MESH: Measuring Errors between Surfaces using the Hausdorff Distance", Proc. of the IEEE International Conference on Multimedia and Expo 2002 (ICME), Vol. 1, pp. 705-708.
- Alt, H. and Scharf, L., "Computing the Hausdorff Diatance between Sets of Curves", Proc. of the 20th European Workshop on Computational Geometry, pp. 233-236, 2004.
- Alt, H. and Scharf, L., "Computing the Hausdorff Distance between Curved Objects", International Journal of Computational Geometry and Applications, Vol. 18, No.5, pp. 307-320, 2008. https://doi.org/10.1142/S0218195908002647
- Tang, M., Lee, M. and Kim, Y. J., "Interactive Hausdorff Distnace Computation for General Polygonal Models", Proc. of SIGGRAPH 09, Computer graphics Annual Conference Series, Article No. 74,2009.
-
Elber, G. and Grandine, T., "Hausdorff and Minimal Distances between Parametric Freeforms in
$R^2$ and$R^3$ ", Lecture Notes in Computer Science: Advaces in Geometric Modeling. and Processing, Proc. of 5th Int. Conf. GMP 2008, Vol. 4975, pp. 191-204,2008. - Aichholzer, O., Aigner, W., Aurenhammer, F., Hackl, T., Obemeder, M. and luttler, B., "Medial Axis. Computation for Planar Free-Form Shapes", Computer- Aided Design, Vol. 41, No.5, pp. 339-349, 2009. https://doi.org/10.1016/j.cad.2008.08.008
- Hoff, K., Culver, T., Keyser, J., Lin, M. and.: Manocha, D., "Fast Computation of Generalized Voronoi Diagrams Using Graphic Hardware", Proc. of SIGGRAPH 99, Computer Graphics Annual Conference Series, pp. 277-286, 1999.
- Sir, Z., Feichtinger, R. and luttler, B., "Approximating Curves and Their Offsets Using Biarcs and Pythagorean Hodograph Quintics", Computer-Aided Design, Vol. 38, No.6, pp. 608-618, 2006. https://doi.org/10.1016/j.cad.2006.02.003
- Nutbourne, A. and Martin,R., "Differential Geometry Applied to Curve and Surface Design", Vol. 1, Chichester, UK, Ellis Horwood, 1988.
- Parkinson, D. and Moreton, D., "Optimal Biarccurve Fitting", Computer-Aided Design, Vol. 23, No. 6, pp. 411-419, 1991. https://doi.org/10.1016/0010-4485(91)90009-L
- Rossignac, J. and Requicha, A, "Piecewise Circular Curves for Geometric Modeling", IBM Journal of Research and Development, Vol. 31, No.3, pp. 296- 313, 1987. https://doi.org/10.1147/rd.313.0296
- IRlT 9.5 User's Manual, Technion. http:// www.cs.technion.ac.il/-irit.