Studies on Purification of Mine Drainage with NaOCl and $H_2O_2$

산화제 NaOCl와 $H_2O_2$를 이용한 광산배수 정화에 관한 연구

  • Choi, Seung-Won (Department of Earth and Environmental Sciences, Andong National University) ;
  • Jang, Yun-Deug (Department of Geology, Kyungpook National University) ;
  • Kim, Young-Hun (Department of environmental engineering, Andong National University) ;
  • Kim, Jeong-Jin (Department of Earth and Environmental Sciences, Andong National University)
  • Published : 2010.02.28

Abstract

Mine and leachate waters were collected from the Okdong mine for study on reaction with oxidizing agents such as NaOCl and $H_2O_2$. The pH and EC of the mine and leachate waters are 5.77, 831 uS/cm, and 6.38, 1920 uS/cm, respectively. The concentrations of Mg, Mn, and Zn are 23.25 mg/l, 14.90 mg/l, and 22.99 mg/l for the mine water and 98.75 mg/l, 3.38 mg/l, and 6.16 mg/l for the leachate water. The concentrations of Mg, Mn and Zn decreased after the reaction with the oxidizing agents and mine water. The concentrations of Mg, Mn and Zn rapidly decreased when oxidizing agents increased. The saturation indices that were computed by visual MINTEQ for initial mine and leachate water were undersaturated with Mg, Zn and Mn compounds. The precipitates after the reaction with the oxidizing agents are composed mainly of mangano-calcite[(Mn, Ca)$CO_3$] with small amount of calcite-magnesian and calcite.

산화제를 이용한 광산배수 정화에 관한 연구를 위하여 옥동광산으로부터 채수한 갱내수와 침출수를 산화제인 NaOCl와 $H_2O_2$를 이용하여 반응 실험을 실시하였다. 초기 갱내수의 pH와 EC는 각각 5.77, 831 uS/cm 이며, Mg(23.25 mg/l), Mn(14.90 mg/l), Zn(22.99 mg/l)이다. 광미적치장으로부터 유출되는 침출수의 pH와 EC는 6.38, 1920 uS/cm이며, Mg(98.75 mg/l), Mn(3.38 mg/l), Zn(6.16 mg/l)로 갱내수와 다른 양이온 농도 특성을 갖는다. 산화제의 종류와 양에 따라 양이온이 제거 되는 데 소요되는 시간적 차이가 있지만, 갱내수와 침출수에 포함된 Mg, Zn, Mn은 99%이상 제거되었다. Visual MINTEQ 계산결과 포화지수가 0보다 큰 값을 나타내는 화합물이 존재하지 않기때문에 초기 갱내수와 침출수로부터 침전 가능한 광물은 존재하지 않는다. 갱내수와 광미적치장 침출수를 NaOCl과 반응시킬 때 생성되는 침전물은 적갈색의 Mangano-calcite이며, 그 외 Calcite magnesian, Calcite 등의 광물을 포함하고 있다.

Keywords

References

  1. Allison, J.D., Brown, D.S. and Novo-Gradac K.J. MINTEQA2/PRODEFA2, A geochemical assessment model for environmental systems: Version 3.0 User's Manual, USEPA Report No. EPA/600/3-91/021: 1991; Athens.Georgia.
  2. Brillasa, E., Mur, E., Sauleda, R., Sanchez, L. Peral, J., Domenech, X. and Casado, J. (1998) Aniline mineralization by AOP's: anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes, Applied Catalysis B: Environmental, v.16, p.31-41. https://doi.org/10.1016/S0926-3373(97)00059-3
  3. Brugam, R. B., Gastineau, J. and Ratcliff, E. (1996) The neutralization of acidic coal mine lakes by additions of natural organic matter: a mesocosm test, International Journal of Rock Mechanics and Mining. Science & Geomechanics Abstracts, v.33, p.324-352.
  4. Cheong, Y. W. (2004) An Overview of Coal Mine Drainage Treatment, Econ. and Environ. Geol., v.37, p.107- 111.
  5. Choi, J. C. (2006) Laboratory Study on the Removal of Heavy Metals Using Apatite for Stabilization of Tailings at the Ulsan Abandoned Iron Mine. Jour. Korean Soc. Soil and Groundwater Environ., v.11, p.1-9.
  6. Choi, J. C. and Lee, M. H. (2004) Remediation Design of Acid Rock Drainage (ARD) from Goro Abandoned Mine. Jour. Korean Soc. Soil and Groundwater Environ., v.9, p.1-10.
  7. Gazea, B., Adam, K. and Kontopoulos, A. (1996) A review of passive systems for the treatment of acid mine drainage. Minerals Engineering, v.9, p.23-42. https://doi.org/10.1016/0892-6875(95)00129-8
  8. Hislop, K. A. and Bolton, J. R. (1999) The photochemical generation of hydroxyl radicals in the UV-vis/ferrioxalate/ $_H{2}_O{2}$ system, Environmental Science & Technology, v.33, p.3119-3126. https://doi.org/10.1021/es9810134
  9. Hwang, J. H., Chon, H. T. and Jung, M. C. (1999) A Study on the Treatment of the Acid Mine Drainage in the Vicinity of the Dogye Coal Mine , Korea. Jour. Korean Inst. Miner. and Energy Res. Eng., v.36, p.260-268.
  10. Jung M. C. (2004) Treatment of Acid Mine Drainage from an Abandoned Coal Mine Using Successive Alkalinity Producing System(SAPS), Korean Soc. of Environ. Engin.. v.26, p.1204-1210.
  11. Kim, J. Y., Chon, H. T. and Jung, M. C. (1999) Assessment of Applicability of Marine Shells as Neutralizer for the Treatment of Acid Mine Drainage. Jour. Korean Inst. Miner. and Energy Res. Eng., v.36, p.319-327.
  12. Kleinmann, R. L. P. and Hedin R. S (1993) Treat mine water using passive methods. Pollution Engineering, v.20, p.20-22.
  13. Kwan, W. P. and Voelker, B. M. (2002) Decomposition of hydrogen peroxide and organic compounds in the presence of dissolved ic coand ferrihydrB., Environmental Science & Technology, v.36, p.1467-1476. https://doi.org/10.1021/es011109p
  14. Kwon, S. D. and Kim, S. J. (1999) Study on the Treatment of the Acid Mine Drainage using the Steel Mill Slag. Jour. Korean Soc. Groundwater Environ., v.6, p.206-212.
  15. Park, J. H., Do, J. H., Lee, H. K., Cho, Y. H. and Kong, S. H. (2009) The Treatment of LNAPL(BETXlMTBE) Contaminated Groundwater Applying Photo-assisted Fenton Reaction with Various Fe(III) Chelator, Jour. Korean Soc. Soil and Groundwater Environ., v.14, p.26-32.
  16. Peyton, G. R., Bell, O. J., Girin, E. and Lefaive, M. H. (1995) Reductive destruction of water contaminants during treatment with hydroxyl radical processes, Environmental Science & Technology, v.29, p.1710- 1712. https://doi.org/10.1021/es00006a041
  17. Shelp, G. S., Chesworth, W. and Spiers, G. (1995) The amelioration of acid mine drainage by an in situ electrochemical method; part 1: Employing scrap iron as the sacrificial anode. Applied Geochemistry, v.10, p.705-713. https://doi.org/10.1016/0883-2927(95)00055-0
  18. Sohn, S. G., Lee, J. Y., Jung, J. S., Lee, H. K. and Kong, S. H. (2007) Development of Practical Advanced Oxidation Treatment System for Decontamination of Soil and Groundwater Contaminated with Chlorinated Solvent (TCE, PCE) : Phase I. Jour. Korean Soc. Soil and Groundwater Environ., v.12, p.105-114.
  19. Tang, W. and Chen, R. Z. (1996) Decolorization Kinetics and Mechanism of Commercial Dyes By $_H{2}_O{2}$/Iron Powder System, Chemosphere. 32, 947-958. https://doi.org/10.1016/0045-6535(95)00358-4
  20. Webb, J. A. and Sasowsky, I. D. (1995) The interaction of acid mine drainage with a carbonate terrane: evidence from the Obey River, north-central Tennessee. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, v.32, p.210A-211A.
  21. Xu, X. R., Li, H. B., Wang, W.H. and Gu, J. D. (2004) Degradation of dyes in aqueous solutions by the Fenton process, Chemosphere, v.57, p.595-600. https://doi.org/10.1016/j.chemosphere.2004.07.030