A Comprehensive Representation Model for Spatial Relations among Regions and Physical Objects considering Property of Container and Gravity

Container 성질과 중력을 고려한 공간과 객체의 통합적 공간관계 표현 모델

  • 박종희 (경북대학교 전자전기컴퓨터학부) ;
  • 임영재 (경북대학교 전자전기컴퓨터학부)
  • Received : 2008.05.28
  • Accepted : 2010.01.07
  • Published : 2010.03.15

Abstract

A space, real or virtual, comprises regions as its parts and physical objects residing in them. A coherent and sophisticated representaion scheme for their spatial relations premises the precision and plausibility in its associated agents' inferencing on the spatial relations and the development of events occurring in such a space. The existing spatial models are not suitable for a comprehensive representation of the general spatial relations in that they have limited expressive powers based on the dichotomy between the large and small scales, or support only a small set of topological relations. The representaion model we propose has the following distinctive chracteristics: firstly, our model provides a comprehensive representation scheme to accommodate large and small scale spaces in an integrated fashion; secondly, our model greatly elaborated the spatial relations among the small-scale objects based on their contact relations and the compositional relations among their respective components objects beyond the basic topological relations like disjoint and touch; thirdly, our model further diversifies the types of supported relations by adding the container property besides the soildness together with considering the gravity direction. The resulting integrated spatial knowledge representation scheme considering the gravity allows the diverse spatial relations in the real world to be simulated in a precise manner in relation to the associated spatial events and provides an expression measure for the agents in such a cyber-world to capture the spatial knowledge to be used for recognizing the situations in the spatial aspects.

실세계의 공간이나 이에 대응되는 가상세계의 공간은 공간의 일부인 지역(region)들과 그것들을 차지하고 있는 물리적 객체(physical object)들로 구성되어 있다. 이러한 공간 구성요소들간의 공간관계의 표현의 실제와의 부합성과 다양성은 이러한 공간에서 활동하는 에이전트의 공간관계 추론이나 이벤트(event)의 전개의 사설성과 정교함의 바탕이 된다. GIS나 AI 분야에서 연구되고 있는 기존의 공간관계 모델들은 객체의 규모에 따라 이원화된 영역에 적절한 모델들이거나 제한된 위상관계만 표현할 수 있기 때문에 다양한 지역과 객체를 가진 일반적 공간의 통합적 표현에는 부적합하다. 본 연구에서 개발될 공간표현 모델은, 첫째 대규모 공간과 소규모 공간 관계에 통합적으로 적용가능한 계층구조를 바탕으로 구성한다. 둘째, 소규모 객체들간에도 disjoint나 touch와 같이 제한된 위상 공간관계(topological relations)만이 아닌 접촉관계와 구성요소객체들의 조합을 바탕으로 하여 충분히 다양한 공간관계를 표현할 수 있도록 세분화한다. 셋째, solid object에 대비되는 container성질을 추가하고 중력 방향을 고려하여 공간관계를 추가로 다양화한다. 본 연구의 결과인 중력의 영향을 고려한 통합적 공간관계 모델은 컴퓨터상에서 실세계와 유사한 복잡한 가상공간을 공간적 사건들과 연관지어 정밀하게 시뮬레이션할 수 있게 하고 가상공간에서 에이전트들이 행동을 할 때 공간적 측면의 상황판단을 할 수 있도록 가상공간에 대한 에이전트들의 공간적 지식을 표현하는 수단을 제공한다.

Keywords

References

  1. Doyle, P. and Hayes-Roth, B., Agents in annotated world, Proc. Of 2nd Conference on Autonomous agents, Minneapolis, MN., 1998.
  2. Park, J., A cognitive modeling of the spatial aspects of a cyber world, technical report, AIMM lab, Kyungpook National University, 1996.
  3. Park, J., Semantics of concepts relevant to the cyber-microcosm, technical report, AIMM lab, Kyungpook National University, 2004.
  4. Herskovits, A., Language and spatial cognition – An interdisciplinary Study of the Prepositions in English, Cambridge University Press, 1986.
  5. Max J. Egenhofer and M.Andrea Rodriguez., Relation Algebras over Containers and Surfaces, An Ontological Study of a Room Space, Journal of Spatial Cognition and Computation, vol.1, no.2, pp.155-180, 1999. https://doi.org/10.1023/A:1010028527587
  6. A. Rodriguez and M. Egenhofer, A comparison of Inferences about Containers and Surfaces in Small- Scale and Large-Scale Spaces, Journal of Visual Languages and Computing, 11(6), pp.639-662, 2000. https://doi.org/10.1006/jvlc.2000.0166
  7. Jin-Young Cho, Sung-Hye Choe, Message-Based Model for Diverse Events by Structured Objects in Virtual Natural Environment, Proceedings of the international conference on artificial intelligence, vol.2, pp.722-727, 2002.
  8. Amitabha Mukerjee, Daniel Hernandez, Tutorial on Representation of Spatial Knowledge, Fourteenth International Joint Conference on Artificial Intelligence (IJCAI-95), 1995.
  9. A. G. Cohn, B. Bennett, J. Gooday, and Nicholas Mark Gotts, Qualitative spatial representation and reasoning with the region connection calculus, GeoInformatica, 1:275-316, 1997. https://doi.org/10.1023/A:1009712514511
  10. Max J. Egenhofer, Robert D. Franzosza, Point-set Topological Spatial Relations, The International Journal for Geographic Information Systems, 5(2): pp.161-174. 1991. https://doi.org/10.1080/02693799108927841
  11. Egenhofer, M. and Franzosa, R., "One the Equivalence of Topological Relation," International Journal of Geographic Information Systems, vol.9, no.2, pp.133-152, 1992.
  12. De Troyer, Specifying spatial and part-whole relations for virtual reality: a language perspective, vrije University dissertation, 2003.
  13. Cohn, A. G., and Gotts N. M., "The 'Egg-Yolk' Representation of Regions with Indeterminate Boundaries, Geographic Objects with Indeterminate Boundaries," Eds., Peter A. Burrough, and Andrew U. Frank. Bristol, PA: Taylor & Francis Inc., pp.171-188., 1996.
  14. Stanley Y. P. Chien, Lucy Q. Xue, and Mathew Palakal, "Task Planning for a Mobile Robot in an Indoor Environment Using Object-Oriented Domain Information," IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics, vol.27, no.6, pp.1007-1016, 1997. https://doi.org/10.1109/TSMCB.1997.650061
  15. S. H. Choe, J. H. Park, S. S. Pyo, Hierarchical spatial relation based on a contiguity graph, International Journal of Intelligent Systems, vol.20, no.9, pp.867-892, 2005. https://doi.org/10.1002/int.20096
  16. Fred H. Croom.: Principles Of Topology Kyung Moon Publishers, pp.55-108, 1996.
  17. Sung-Hye Choe, Topological Adjacency Relation depending on the Scope of an Agent among Physical Object, Proceedings of the international conference on artificial intelligence, vol.1, pp.328-333, 2002.
  18. Borgo, S., Guarino, N., and Masolo, C., Towards an Ontological Theory of Physical Objects, Proceedings of IMACS-IEEE/SMC Conference CESA96, 1996.
  19. A. A. G. Reqiocja. "Representations for Rigid Solids: Theory, Methods, and Systems," ACM Computing Surveys, vol.12, no.4, Dec. 1980, pp. 437-464. https://doi.org/10.1145/356827.356833
  20. Y. J. Lim.: Container 성질을 가진 Physical Object 들간의 물리기반 공간관계의 표현 및 활용, 경북대학교 석사학위논문, 2005.