DOI QR코드

DOI QR Code

The Development of a Benthic Chamber (BelcI) for Benthic Boundary Layer Studies

저층 경계면 연구용 Benthic chamber(BelcI) 개발

  • Received : 2009.09.18
  • Accepted : 2009.11.24
  • Published : 2010.02.28

Abstract

We have developed an in-situ benthic chamber (BelcI) for use in coastal studies that can be deployed from a small boat. It is expected that BelcI will be useful in studying the benthic boundary layer because of its flexibility. BelcI is divided into three main areas: 1) frame and body chamber, 2) water sampler, and 3) stirring devices, electric controller, and data acquisition technology. To maximize in-situ use, the frame is constructed from two layers that consist of square cells. All electronic parts (motor controller, pA meter, data acquisition, etc.) are low-power consumers so that the external power supply can be safely removed from the system. The hydrodynamics of BelcI, measured by PIV (particle image velocimetry), show a typical "radial-flow impeller" pattern. Mixing time of water in the chamber is about 30 s, and shear velocity ($u^*$) near the bottom layer was calculated at $0.32\;cm\;s^{-1}$. Measurements of diffusivity boundary layer thickness showed a range of $180-230\;{\mu}m$. Sediment oxygen consumption rate, measured in-situ,was $84\;mmol\;O_2\;m^{-2}\;d_{-1}$, more than two times higher than on-board incubation results. Benthic fluxes assessed from in-situ incubation were estimated as follows: nitrate + nitrite = $0.18\;{\pm}\;0.07\;mmol\;m^{-2}\;d^{-1}$ ammonium $23\;{\pm}\;1\;mmol\;m^{-2}\;d^{-1}$ phosphate = $0.09\;{\pm}\;0.02\;mmol\;m^{-2}\;d^{-1}$ and silicate = $23\;{\pm}\;1\;mmol\;m^{-2}\;d^{-1}$.

소형선박에서 운영이 가능한 연안용 benthic chamber(BelcI)를 개발했다. 운영상에 유연성이 큰 BelcI는 연안 저층 경계면 연구에 폭넓게 이용될 수 있을 것으로 판단된다. BelcI는 몸체, 자동채수기, 교반기 및 전자제어부로 구성된다. 운영상에 유연성을 극대화하기 위해 몸체는 사각 셀 단위의 2단 구조로 설계했다. 센서신호의 증폭, 교반기 및 채수장치 제어회로를 초 전력 소모 회로로 구성하여 외부 전원장치를 제거했다. PIV(particle image velocimetry)기법으로 측정한 chamber 내부의 유체유통은 전형적인 radial-flow impeller의 특성을 나타냈다. chamber내 물의 혼합 시간은 약 30초로 추정되었으며, 바닥면에서 shear velocity($u^*$)는 약 $0.32\;cm\;s^{-1}$였다. 산경계층(DBL) 두께는 약 $180{\sim}230\;{\mu}m$였다. 현장에서 측정한 산소소모율은 약 $84\;mmol\;O_2\;m^{-2}\;d_{-1}$로 선상배양결과 보다 2배 이상 컸다. 저층 영양염 플럭스는 "질산+아질산"이 $0.18\;{\pm}\;0.07\;mmol\;m^{-2}\;d^{-1}$, 암모니움이 $2.3\;{\pm}\;0.5\;mmol\;m^{-2}\;d^{-1}$, 인산인이 $0.09\;{\pm}\;0.02\;mmol\;m^{-2}\;d^{-1}$, 규산규소가 $23\;{\pm}\;1\;mmol\;m^{-2}\;d^{-1}$로 추정되 었다.

Keywords

References

  1. 이재성, 김기현, 유준, 정래홍, 고태승, 2003. 산소 미세전극을 이용한 남해연안 퇴적물/해수 계면에서 산소소모율 및 유기탄소 산화율 추정. 한국해양학회지-바다, 8: 392-400.
  2. 이재성, 박미옥, 안순모, 김성길, 김성수, 정래홍, 박종수, 진현국, 2007. 낙동강 하구 갯벌 사질퇴적물에서 생지화학적 유기탄소순환. 한국해양학회지-바다, 12: 349-358.
  3. 정래홍, 임현식, 김성수, 박종수, 전경암, 이영식, 이재성, 김귀영, 고우진, 2001. 남해안 가두리 양식장 밀집해역의 대형저서동물군집에 대한 연구. 한국해양학회지-바다, 7: 235-246.
  4. 해양수산부, 2005. 해양환경공정시험방법. 400pp.
  5. Aller, R.C., J.Y. Aller, N.E. Blair, J.E. Mackin, P.D. Rude, I. Stupakoff, S. Patchineelam, S.E. Boehme and B. Knoppers, 1991. Biogeochemical processes in amazon shelf sediments, Oceanography, 4: 27-32. https://doi.org/10.5670/oceanog.1991.18
  6. Aller, R.C., N.E. Blair, Q. Xia and P.D. Rude, 1996. Remineralization rates, recycling, and storage of carbon in Amazon shelf sediments. Continental Shelf Research, 16: 753-786. https://doi.org/10.1016/0278-4343(95)00046-1
  7. Archer, D. and A. Devol, 1992. Benthic oxygen fluxes on the Washington shelf and slope: a comparison of in situ microelectrode and chamber flux measurements. Linmol. Oceanogr., 37: 614-629. https://doi.org/10.4319/lo.1992.37.3.0614
  8. Berelson, W., J. McManus, K. Coale, K. Johson, D. Burdige, T. Kilgore, D. Colodner, F. Chavez, R. Kudela and J. Boucher, 2003. A time series of benthic flux measurements from Monterey Bay, CA. Continental Shelf Research, 23: 457-481. https://doi.org/10.1016/S0278-4343(03)00009-8
  9. Berelson, W., K. Johnson, K, Coale and H.-C, Li, 2002. Organic matter diagenesis in the sediments of the San Pedro shelf along a transect affected by sewage effluent. Continental Shelf Research, 22: 1101-1115. https://doi.org/10.1016/S0278-4343(01)00120-0
  10. Berg, P., H. Roy, F. Janssen, V. Meyer, B.B. Jorgensen, M. Huettel and D. de. Beer, 2003. Oxygen uptake by aquatic sediments measured with a novel non-invasive eddy-correlation technique. Mar. Ecol. Prog. Ser., 261: 75-83. https://doi.org/10.3354/meps261075
  11. Berg, P., H. Roy and P.L. Wiberg, 2007. Eddy correlation flux measurements: the sediment surface area that contributes to the flux. Limnol. Oceanogr., 52(4): 1672-1684. https://doi.org/10.4319/lo.2007.52.4.1672
  12. Berner R.A., 1980. Early diagenesis: A Theoretical Approach. Princeton Univ. Press, Princeton, N.J., 241p.
  13. Boudreau B.P. and B.B. Jorgensen, 2001. The Benthic Boundary Layer: Transport Processes and Biogeochemistry, Oxford, New York, pp. 4-43.
  14. Cai W.-J. and F.L. Sayles. 1996. Oxygen penetration depths and fluxes in marine sediments. Mar. Chem., 52: 123-131. https://doi.org/10.1016/0304-4203(95)00081-X
  15. Canfield D.E., B Thamdrup and E. Kristensen, 2006. Aquatic Geomicrobiology, Elsevier Academic Press, San Diego, pp. 640.
  16. Chester R., 1990. Marine Geochemistry, Unwin Hyman Ltd., London, pp. 422-437.
  17. Christensen, J.P., A.H. Devol and W.M. Smethie, 1984. Biological enhancement of solute exchange between sediments and bottom water on the Washington continental shelf. Continental Shelf Research 3: 9-23. https://doi.org/10.1016/0278-4343(84)90040-2
  18. Cruisius J., P. Berg, D.J. Koopmans and L. Erban, 2008. Eddy correlation measurement of submarine discharge. Mar. Chem., 109: 77-85. https://doi.org/10.1016/j.marchem.2007.12.004
  19. Devol, A.H. and J.P. Christensen, 1993. Benthic fluxes andnitrogen cycling in sediments of the continental margin of the eastern N. Pacific. J. Mar. Res., 51: 345-372. https://doi.org/10.1357/0022240933223765
  20. Garcia H.E. and L.I. Gordon, 1992. Oxygen solubility in seawater: Better fitting equations. Limnol. Oceanogr., 37: 1307-1312. https://doi.org/10.4319/lo.1992.37.6.1307
  21. Glud, R.N., J.K. Gundersen, R. Hans and B.B. Jorgensen, 2003. Seasonaldynamics of benthic $O_2$ uptake in a semienclosed bay: Importance of diffusion and faunal activity. Limnol. Oceanogr., 48(3): 1265-1276. https://doi.org/10.4319/lo.2003.48.3.1265
  22. Jorgensen, B.B. and J. Des Marais, 1990. The diffusive boundary layer of sediments: Oxygen microgradients over a microbial mat. Limnol. Oceanogr., 35: 1343-1355. https://doi.org/10.4319/lo.1990.35.6.1343
  23. Lee, J.S., S. Kim, S-S, Kim, S. An and Y.-T. Kim, 2009. Sediment Oxygen Consumption in Semi-Closed Korean Coastal Bays during Summer. Ocean Sci. J., 44(3): 161-171. https://doi.org/10.1007/s12601-009-0014-3
  24. Morse, J.W., G. Boland and G.T. Rowe, 1999. A 'gilled' benthic chamber for extended measurement of sediment-water fluxes. Mar. Chem., 66: 225-230. https://doi.org/10.1016/S0304-4203(99)00032-8
  25. Oldham, C.E., G.N. Ivey and C. Pullin, 2004. Estimation of a characteristic friction velocity in stirred benthic chambers. Mar. Ecol. Prog. Ser., 279: 291-295. https://doi.org/10.3354/meps279291
  26. Rasheed M., C. Wild, U. Franke and M. Huettel, 2004. Benthic photosynthesis and oxygen consumption in permeable carbonate sediments at Heron Island, Great BarrierReef, Australia. Estuar. Coast. Shelf Sci., 59: 139-150. https://doi.org/10.1016/j.ecss.2003.08.013
  27. Santschi, P.H., R.F. Andersson, M.Q. Fleisher and W. Bowles, 1991. Measurements of diffusive sublayer thickness in the ocean by alabaster dissolution, and their implications for the measurements of benthic fluxes. J. Geophys. Res., 96: 10641-10657. https://doi.org/10.1029/91JC00488
  28. Santschi, P.H., P. Bower, U.P. Nyffeler, A. Azevedo and W.S. Broecker, 1983. Estimates of the resistance to chemical transport posed by the deep-sea boundary layer. Limnol. Oceanogr., 28: 899-912. https://doi.org/10.4319/lo.1983.28.5.0899
  29. Sommer, S., M. Turk, S. Kriwanek and O. Pfannkuche, 2008. Gas exchange system for extended in-situ benthic chamber flux measurements under controlled oxygen concentrations: First application Sea bed methan emission measurements at Captain Arutyunov mud volcano. Limnol. Oceanogr., Methods, 6: 23-33. https://doi.org/10.4319/lom.2008.6.23
  30. Stahl, H., A. Tengberg, J. Brunnegard, E. Bjornbom, T.L. Forbes, A.B. Josefson, H.G. Kaberi, I. M. Karle Hassellov, F. Olsgard, P. Roos and P.O.J. HalL 2004. Factors influencing organic carbon recycling and burial in Skagerrak sediments. J. Mar. Res., 62: 867-907. https://doi.org/10.1357/0022240042880873
  31. Tengberg, A., F. de, Bovee, P. Hall, W. Berelson, D. Chadwick, G. Ciceri, P. Crassous, A. Devol, S. Emerson, J. Gage, R. Glud, F. Graziottini, J. Gundersen, D. Hammond, W. Helder, K. Hinga, O. Holby, R. Jahnke, A. Khripounoff, S. Lieberman, V. Nuppenau, O. Pfannkuche, C. Reimer, G. Rowe, A. Sahami, F. Sayles, M. Schurter, D. Smallman, W. Wehrli and P. de Wilde, 1995. Benthic chamber and profiling landers in oceanography - A review of design, technical solutions and functioning. Prog. Oceanogr., 35: 253-294. https://doi.org/10.1016/0079-6611(95)00009-6
  32. Tengberg, A., H. Stahl, G. Gust, V. Muller, U. Arning, H. Andersson and P.O.J. Hall, 2004. Intercalibation of benthic flux chamber I. Accuracy of flux measurements and influence of chamber hydrodynamics. Pro. Oceanogr., 60: 1-12.
  33. Tengberg, A., P.O.J. Hall, U. Andersson, B. Linden, O. Styrenius, G. Boland, F. de. Bovee, B. Carlsson, S. Ceradini, A. Devol, G. Duineveld, J.-U. Friemann, R.N. Glud, A. Khripounoff, J. Leather, P. Linke, L. Lund-Hansen, G. Rowe, P. Santschi, P. de Wilde and U. Witte, 2005. Intercalibation of benthic flux chambers II. Hydrodynamics characterization and flux comparisions of 14 different designs. Mar. Chem., 94: 147-173. https://doi.org/10.1016/j.marchem.2004.07.014
  34. Thamdrup, B., J.W. Hanssen and B.B. Jorgensen. 1998. Temperature dependence of aerobic respiration in a coastal sediment. FEMS Microbiol. Ecol., 25: 189-200. https://doi.org/10.1111/j.1574-6941.1998.tb00472.x