References
- Han, J. S., 2007, ″Design, Simulation and Fabrication of a Quadstable Monolithic Mechanism,″ Transactions of the KSME A, 31(5), pp. 617-624. https://doi.org/10.3795/KSME-A.2007.31.5.617
- Qiu, J., Lang, J. H. and Slocum, A. H., 2004, ″A Curved-Beam Bistable Mechanism,″ J. Microelectro-Mech. Syst., Vol. 13, No. 2, pp. 137-146. https://doi.org/10.1109/JMEMS.2004.825308
- Qiu, J., Lang, J. H., Slocum, A. H. and Struempler, R., 2003, ″A High-Current Electrothermal Bistable MEMS Relay,″ Proc. IEEE MEMS 2003, pp. 64-67.
- Vangbo, M., 1998, ″An Analytical Analysis of a Compressed Bistable Buckled Beam,″ Sensors Actuators (A), Vol. 69, No. 3, pp. 212-216. https://doi.org/10.1016/S0924-4247(98)00097-1
- Vangbo, M. and Backlund, Y., 1998, ″A Lateral Symmetrically Bistable Buckled Beam,″ J. Micromech. Microeng., Vol. 8, pp. 29-32. https://doi.org/10.1088/0960-1317/8/1/005
- Schomburg, W. K. and Goll, C., 1998, ″Design Optimization of Bistable Microdiaphragm Valves,″ Sensors Actuators (A), Vol. 64, No. 3, pp. 259-264. https://doi.org/10.1016/S0924-4247(97)01612-9
- Song, G. E., Kim, J. S., Kim, K. H. and Lee, Y. P., 2004, ″Development and Analysis for Micro Actuator Using Buckling Membrane and Phase Change,″ Transactions of the KSME B, 28(6), pp. 638-645. https://doi.org/10.3795/KSME-B.2004.28.6.638
- Lee, J. H., Lee, M. L., Jang, W. I., Choi, C. A. and Joo, J. W., 1999, ″Bi-Stable Planar Polysilicon Micro-Actuators with Shallow Arch-Shaped Leaf Springs,″ Proc. SPIE, Vol. 3876, pp. 274-279. https://doi.org/10.1117/12.360505
- Jensen, B. D., Howell, L. L. and Salmon, L. G., 1999, ″Design of Two-Link, In-Plane, Bistable Compliant Micro-Mechanisms,″ J. Mech. Des., Vol. 121, No. 3, pp. 416-423. https://doi.org/10.1115/1.2829477
- Gomm, T., Howell, L. L. and Selfridge, R. H., 2002, ″In-Plane Linear Displacement Bistable Microrelay,″ J. Micromech. Microeng., Vol. 12, pp. 257-264. https://doi.org/10.1088/0960-1317/12/3/310
- Masters, N. D. and Howell, L. L., 2003, ″A Self-Retracting Fully-Compliant Bistable Micromechanism,″ J. Microelectromech. Syst., Vol. 12, pp. 273-280. https://doi.org/10.1109/JMEMS.2003.811751
- Hwang, I. H., Shim, Y. S. and Lee, J. H., 2003, ″Modeling and Experimental Characterization of the Chevron-Type bi-Stable Microactuator,″ J. Micromech. Microeng., Vol. 13, pp. 948-954. https://doi.org/10.1088/0960-1317/13/6/318
- Casals-Terre, J. and Shkel, A. M., 2004, ″Dynamic Analysis of a Snap-Action Micromechanism,″ IEEE Sensors, Vienna, Oct. 2004, pp. 1245-1248.
- Goll, C., Bacher, W., Bustgens, B., Maas, D., Menz, W. and Schomburg, W. K., 1996, ″Microvalves with Bistable Buckled Polymer Diaphragms,″ J. Micromech. Microeng., Vol. 6, pp. 77-79. https://doi.org/10.1088/0960-1317/6/1/017
- Halg, B., 1990, ″On a Nonvolatile Memory Cell Based on Micro-Electro-Mechanics,″ Proc. IEEE Micro Electro Mechanical Systems Workshop, pp 172-176.
- Hoffman, M., Kopka, P. and Voges, E., 1999, ″Bistable Micromechanical Fiber-Optic Switches on Silicon with Thermal Actuators,″ Sensors Actuators (A), Vol. 78, No. 1, pp. 28-35. https://doi.org/10.1016/S0924-4247(99)00200-9
- Brenner, M. P., Lang, J. H., Li, J., Qiu, J. and Slocum, A. H., 2003 ″Optimal Design of a Bistable Switch,″ PNAS, Vol. 100, No. 17, pp. 9663-9667. https://doi.org/10.1073/pnas.1531507100
- Ko, J. S., Lee, M. L., Lee, D. S., Choi, C. A., and Kim, Y. T., 2002, ″Development and Application of Laterally Driven Electromagnetic Microactuator,″ Appl. Phys. Lett., 81, pp. 547-549. https://doi.org/10.1063/1.1494462
- Han, J. S., Ko, J. S., Kim, Y. T. and Kwak, B. M., 2002, ″Parametric Study and Optimization of a Micro-Optical Switch with a Laterally Driven Electromagnetic Microactuator,″ J. Micromech. Microeng., Vol. 12, pp. 939-947. https://doi.org/10.1088/0960-1317/12/6/326
- Akiyama, T., Staufer, U. and deRooij, N. F., 2000, "Atomic Force Microscopy Using an Integrated Comb-Shape Electrostatic Actuator for High-Speed Feedback Motion," Appl. Phys. Lett., Vol. 76, No. 21, pp. 31-41. https://doi.org/10.1063/1.125646
-
Jeong, O. C. and Yang, S. S., 2000, "Fabrication and Test of a Thermopneumatic Micropump with a Corrugated
$p^+$ Diaphram," Sensors Actuators (A), Vol. 83, pp. 249-255. https://doi.org/10.1016/S0924-4247(99)00392-1 - Debeda, H., Freyhold, T. V., Mohr, J., Wallrabe, U. and Wengelink, J., 1999, "Development of Miniaturized Piezoelectric Actuators for Optical Applications Realized Using LIGA Technology," J. Microelectromech. Syst., Vol. 8, No. 3, pp. 258-263. https://doi.org/10.1109/84.788629
- ANSYS, 2003, ANSYS Theory Reference 7.1, (ANSYS Inc).