References
- Alonso, L. and Fuchs, E. (2003). Stem cells of the skin epithelium. Proc. Natl. Acad. Sci. U S A 100, 11830-11835. https://doi.org/10.1073/pnas.1734203100
- Augustin, C., Frei, V., Perrier, E., Huc, A. and Damour, O. (1997). A skin equivalent model for cosmetological trials: an in vitro efficacy study of a new biopeptide. Skin Pharmacol. 10, 63-70. https://doi.org/10.1159/000211470
- Black, A. F., Bouez, C., Perrier, E., Schlotmann, K., Chapuis, F. and Damour, O. (2005). Optimization and characterization of an engineered human skin equivalent. Tissue Eng. 11, 723-733. https://doi.org/10.1089/ten.2005.11.723
- Blanpain, C. and Fuchs, E. (2006). Epidermal stem cells of the skin. Annu. Rev. Cell. Dev. Biol. 22, 339-373. https://doi.org/10.1146/annurev.cellbio.22.010305.104357
- Candi, E., Schmidt, R. and Melino, G. (2005). The cornified envelope: a model of cell death in the skin. Nat. Rev. Mol. Cell Biol. 6, 328-340. https://doi.org/10.1038/nrm1619
- Drozdoff, V. and Pledger, W. J. (1993). Commitment to differentiation and expression of early differentiation markers in murine keratinocytes in vitro are regulated independently of extracellular calcium concentrations. J. Cell Biol. 123, 909-919. https://doi.org/10.1083/jcb.123.4.909
- Duplan-Perrat, F., Damour, O., Montrocher, C., Peyrol, S., Grenier, G., Jacob, M. P. and Braye, F. (2000). Keratinocytes influences the maturation and organization of the elastin network in a skin equivalent. J. Invest. Dermatol. 114, 365-370. https://doi.org/10.1046/j.1523-1747.2000.00885.x
- Eichner, R., Sun, T. T. and Aebi, U. (1986). The role of keratin subfamilies and keratin pairs in the formation of human epidermal intermediate filaments. J. Cell Biol. 102, 1767-1777. https://doi.org/10.1083/jcb.102.5.1767
- Fuchs, E. (2007). Scratching the surface of skin development. Nature 445, 834-842. https://doi.org/10.1038/nature05659
- Fuchs, E. (2008). Skin stem cells: rising to the surface. J. Cell Biol. 180, 273-284. https://doi.org/10.1083/jcb.200708185
- Harding, C. R. and Scott, I. R. (1983). Histidine-rich proteins (filaggrins): structural and functional heterogeneity during epidermal differentiation. J. Mol. Biol. 170, 651-673. https://doi.org/10.1016/S0022-2836(83)80126-0
- Houben, E., De Paepe, K. and Rogiers, V. (2007). Epidermal proliferation and differentiation kerainocyte’s courses of life. Skin Pharmacol. Physiol. Skin Pharmacol. Physiol. 20, 122-132. https://doi.org/10.1159/000098163
- Kaur, P. (2006). Interfollicular epidermal stem cells: identification, challenges, potential. J. Invest. Dermatol. 126, 1450-1458. https://doi.org/10.1038/sj.jid.5700184
- Kaur, P. and Li, A. (2000). Adhesive properties of human basal epidermal cells: an analysis of keratinocyte stem cells, transit amplifying cells, and postmitotic differentiating cells. J. Invest. Dermatol. 114, 413-420. https://doi.org/10.1046/j.1523-1747.2000.00884.x
- Larderet, G., Fortunel, N. O., Vaigot, P., Cegalerba, M, Maltère, P., Zobiri, O., Gidrol, X., Waksman, G. and Martin, M. T. (2006). Human side population keratinocytes exhibit longterm proliferative potential and a specific gene expression profile and can form a pluristratified epidermis. Stem Cells 24, 965-974. https://doi.org/10.1634/stemcells.2005-0196
- Li, A., Pouliot, N., Redvers, R. and Kaur, P. (2004). Extensive tissue-regenerative capacity of neonatal human keratinocyte stem cells and their progeny. J. Clin. Invest. 113, 390-400. https://doi.org/10.1172/JCI200419140
- Li, A., Simmons, P. J. and Kaur, P. (1998). Identification and isolation of candidate human keratinocyte stem cells based on cell surface phenotype. Proc. Natl. Acad. Sci. U S A 95, 3902-3907. https://doi.org/10.1073/pnas.95.7.3902
- Morris, R. J., Fischer, S. M. and Slaga, T. J. (1985). Evidence that the centrally and peripherally located cells in the murine epidermal proliferative unit are two distinct cell populations. J. Invest. Dermatol. 84, 277-281. https://doi.org/10.1111/1523-1747.ep12265358
- Nagira, T., Nagahata-Ishiguro, M. and Tsuchiya, T. (2007). Effects of sulfated hyaluronan on keratinocyte differentiation and Wnt and Notch gene expression. Biomaterials 28, 844-850. https://doi.org/10.1016/j.biomaterials.2006.09.041
- Noblesse, E., Cenizo, V., Bouez, C., Borel, A., Gleyzal, C., Peyrol, S., Jacob, M. P., Sommer, P. and Damour, O. (2004). Lysyl oxidase-like and lysyl oxidase are present in the dermis and epidermis of a skin equivalent and in human skin and are associated to elastic fibers. J. Invest. Dermatol. 122, 621-630. https://doi.org/10.1111/j.0022-202X.2004.22330.x
- Pfaffl, M. W., Horgan, G. W. and Dempfle, L. (2002). Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30, e36. https://doi.org/10.1093/nar/30.9.e36
- Rice, R. H. and Green, H. (1979). Presence in human epidermal cells of a soluble protein precursor of the cross-linked envelope: activation of the cross-linking by calcium ions. Cell 18, 681-694. https://doi.org/10.1016/0092-8674(79)90123-5
- Shahabeddin, L., Berthod, F., Damour, O. and Collombel, C. (1990). Characterization of skin reconstructed on a chitosancross-linked collagen-glycosaminoglycan matrix Skin Pharmacol. 3, 107-114. https://doi.org/10.1159/000210857
- Tani, H., Morris, R. J. and Kaur, P. (2000). Enrichment for murine keratinocyte stem cells based on cell surface phenotype. Proc. Natl. Acad. Sci. U S A 97, 10960-10965. https://doi.org/10.1073/pnas.97.20.10960
Cited by
- Functionalised nanostructures for transdermal delivery of drug cargos 2017, https://doi.org/10.1080/1061186X.2017.1374388