DOI QR코드

DOI QR Code

Effect of Additives on the Refractive Index of B2O3-SiO2-Al2O3 Glasses for Photolithographic Process in Electronic Micro Devices

  • Received : 2010.06.16
  • Accepted : 2010.06.29
  • Published : 2010.07.27

Abstract

In fabricating plasma display panels, the photolithographic process is used to form patterns of barrier ribs with high accuracy and high aspect ratio. It is important in the photolithographic process to control the refractive index of the photosensitive paste. The composition of this paste for photolithography is based on the $B_2O_3-SiO_2-Al_2O_3$ glass system, including additives of alkali oxides and rare earth oxides. In this work, we investigated the density, structure and refractive index of glasses based on the $B_2O_3-SiO_2-Al_2O_3$ system with the addition of $Li_2O$, $K_2O$, $Na_2O$, CaO, SrO, and MgO. The refractive index of the glasses containing K2O, Na2O and CaO was similar to that of the [BO3] fraction while that of the SrO, MgO and Li2O containing glasses were not correlated with the coordination fraction. The coordination number of the boron atoms was measured by MAS NMR. The refractive index increased with a decrease of molar volume due to the increase in the number of non-bridging oxygen atoms and the polarizability. The lowest refractive index (1.485) in this study was that of the $B_2O_3-SiO_2-Al_2O_3-K_2O$ glass system due to the larger ionic radius of $K^+$. Based on our results, it has been determined that the refractive index of the $B_2O_3-SiO_2-Al_2O_3$ system should be controlled by the addition of alkali oxides and alkali earth oxides for proper formation of the photosensitive paste.

Keywords

References

  1. B. H. Jung and H. S. Kim, Kor. J. Mater. Res., 13(1), 53 (2003) (in Korean). https://doi.org/10.3740/MRSK.2003.13.1.053
  2. S. W. Jeong, W. S. Kim, D. H. Lee, K. E. Min, K. H. Seo, I. K. Kang and L. S. Park, J. Appl. Polym. Sci., 85(10), 2092 (2002). https://doi.org/10.1002/app.10764
  3. Y. Iguchi, T. Masaki and K. Iwanaga, United States Patent, US 6 197 480 B1.
  4. S. Hornschuh, B. Messerschmidt, T. Possner, U. Prossner and C. Russel, J. Non-Cryst. Solids, 347, 121 (2004). https://doi.org/10.1016/j.jnoncrysol.2004.09.021
  5. S. Hornschuh, B. Messerschmidt, T. Possner, U. Prossner and C. Russel, J. Non-Cryst. Solids, 352, 4076 (2006). https://doi.org/10.1016/j.jnoncrysol.2006.06.029
  6. L. Chunhua, N. Yaru, Z. Qitu and X. Zhongzi, J. Rare Earths., 24, 413 (2006).
  7. I. Fanderlik, Optical Properties of Glass, p. 120, Elsevier Science Publishing, New York (1983).
  8. J. Eales, Manual and Databook of Glass Technology Calculations, p. 104, Ordentlich, Israel (1977).
  9. P. Zhao, S. Kroeker and J. F. Stebbins, J. Non-Cryst. Solids, 276(1-3), 122 (2000). https://doi.org/10.1016/S0022-3093(00)00290-8
  10. B. G. Parkinson, D. Holland, M. E. Smith, A. P. Howes and C. R. Scales, J. Non-Cryst. Solids, 353, 4076 (2007). https://doi.org/10.1016/j.jnoncrysol.2007.06.016
  11. A. Grandjean, M. Malki, V. Montouillout, F. Debruycker and D. Massiot, J. Non-Cryst. Solids, 354, 1664 (2008). https://doi.org/10.1016/j.jnoncrysol.2007.10.007
  12. D. Mao and G. Lu, J. Solid State Chem., 180, 484 (2007). https://doi.org/10.1016/j.jssc.2006.11.009
  13. H. Sholze, Glass (Nature, Structure and Properties), p.153, Springer-Verlag, New York (1990).
  14. Y. H. Yun, S. A. Feller and P. J. Bray, J. Non-Cryst. Solids, 33(2), 273 (1979). https://doi.org/10.1016/0022-3093(79)90055-3
  15. P. Chimalawong, J. Kaewkhao, C. Kedkaew and P. Limsuwan, J. Phys. Chem. Solids, 71, 965 (2010). https://doi.org/10.1016/j.jpcs.2010.03.044