DOI QR코드

DOI QR Code

무전해 코발트 코팅된 금속계 SOFC분리판의 제조 및 특성 평가

Synthesis and Characterization of the Co-electrolessly Deposited Metallic Interconnect for Solid Oxide Fuel Cell

  • 한원규 (한양대학교 신소재 공학부) ;
  • 주정운 (한양대학교 신소재 공학부) ;
  • 황길호 (한양대학교 신소재 공학부) ;
  • 서현석 (한양대학교 신소재 공학부) ;
  • 신정철 (한양대학교 철강연구소) ;
  • 전재호 (포항산업과학연구원) ;
  • 강성군 (한양대학교 신소재 공학부)
  • Han, Won-Kyu (Division of Materials Science and Engineering, Hanyang University) ;
  • Ju, Jeong-Woon (Division of Materials Science and Engineering, Hanyang University) ;
  • Hwang, Gil-Ho (Division of Materials Science and Engineering, Hanyang University) ;
  • Seo, Hyun-Seok (Division of Materials Science and Engineering, Hanyang University) ;
  • Shin, Jung-Chul (Research Institute of Steel Processing & Application, Hanyang University) ;
  • Jun, Jae-Ho (Research Institute of Industrial Science and Technology (RIST)) ;
  • Kang, Sung-Goon (Division of Materials Science and Engineering, Hanyang University)
  • 투고 : 2010.04.18
  • 심사 : 2010.06.29
  • 발행 : 2010.07.27

초록

For this paper, we investigated the area specific resistance (ASR) of commercially available ferritic stainless steels with different chemical compositions for use as solid oxide fuel cells (SOFC) interconnect. After 430h of oxidation, the STS446M alloy demonstrated excellent oxidation resistance and low ASR, of approximately 40 $m{\Omega}cm^2$, of the thermally grown oxide scale, compared to those of other stainless steels. The reason for the low ASR is that the contact resistance between the Pt paste and the oxide scale is reduced due to the plate-like shape of the $Cr_2O_3$(s). However, the acceptable ASR level is considered to be below 100 $m{\Omega}cm^2$ after 40,000 h of use. To further improve the electrical conductivity of the thermally grown oxide on stainless steels, the Co layer was deposited on the stainless steel by means of an electroless deposition method; it was then thermally oxidized to obtain the $Co_3O_4$ layer, which is a highly conductive layer. With the increase of the Co coating thickness, the ASR value decreased. For Co deposited STS444 with 2 ${\mu}m$hickness, the measured ASR at $800^{\circ}$ after 300 h oxidation is around 10 $m{\Omega}cm^2$, which is lower than that of the STS446M, which alloy has a lower ASR value than that of the non-coated STS. The reason for this improved high temperature conductivity seems to be that the Mn is efficiently diffused into the coating layer, which diffusion formed the highly conductive (Mn,Co)$_3O_4$ spinel phases and the thickness of the $Cr_2O_3$(S), which is the rate controlling layer of the electrical conductivity in the SOFC environment and is very thin

키워드

참고문헌

  1. J. W. Fergus, Mater. Sci. Eng., A397, 271 (2005).
  2. I. Kosacki, C. M. Rouleau, P. F. Becher, J. Bentley and D. H. Lowndes, Solid State Ionics, 176, 1319 (2005). https://doi.org/10.1016/j.ssi.2005.02.021
  3. L. Antoni, Mater. Sci. Forum, 461-464, 1073 (2004). https://doi.org/10.4028/www.scientific.net/MSF.461-464.1073
  4. Z. Yang, G. G. Xia and J. W. Stevenson, J. Power Sources, 160, 1104 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.099
  5. C. Gindorf, L. Singheiser and K. Hiilpert, Steel Res., 72 (11-12), 528 (2001). https://doi.org/10.1002/srin.200100163
  6. B. B. Ebbinghaus, Combust. Flame, 93(1-2), 119 (1993). https://doi.org/10.1016/0010-2180(93)90087-J
  7. Z. Yang, J. S. Hardy, M. S. Walker, G. Xia, S. P. Simner and J. W. Stevenson, J. Electronchem. Soc., 151, A1825 (2004). https://doi.org/10.1149/1.1797031
  8. W. Z. Zhu and S. C. Deevi, Mater. Sci. Eng., A348, 227 (2003).
  9. W. J. Quadakkers, J. Piron-Abellan, V. Shemet and L. Singheiser, Mater. High Temp., 20(2), 115 (2003). https://doi.org/10.3184/096034003782749071
  10. J. K. Dennis and T. E. Such, Nickel and chromium plating, 1st ed., p. 231, Newnes-Butterworths Press (1972).
  11. K. Hilpert, D. Das, M. Miller, D. H. Peck and R. Weip, J. Electrochem. Soc., 143(11), 3642 (1996). https://doi.org/10.1149/1.1837264
  12. N. Sakai, T. Horita, Y. P. Xiong, K. Yamaji, H. Kishimoto, M. E. Brito, H. Yokokawa and T. Maruyama, Solid State Ionics, 176, 681 (2005). https://doi.org/10.1016/j.ssi.2004.11.012
  13. J. H. Jun, S. G. Kim, D. H. Kim, J. H. Jun, I. H. Jung and J. H. Lee, RIST, 19, 149 (2005) (ISSN 1225-486X).
  14. Z. Yang, G.-G. Xia, X.-H. Li and J. W. Stevenson, Int. J. Hydrogen Energ., 32, 3648 (2007). https://doi.org/10.1016/j.ijhydene.2006.08.048
  15. L. J. Qu, J. M. Hill and D. G. Ivey, J. of Power Sources, 153, 114 (2006). https://doi.org/10.1016/j.jpowsour.2005.03.137
  16. D. P. Lim, D. S. Lim, J. S. Oh and I. W. Lyo, Surf. Coating Tech., 200, 1248 (2005). https://doi.org/10.1016/j.surfcoat.2005.08.131