DOI QR코드

DOI QR Code

Optimum Recovery of Biogas from Pig Slurry with Different Compositions

돈분 슬러리 성상에 따른 최적 바이오가스 회수

  • Park, Woo-Kyun (National Academy of Agricultural Science, Rural Development Administration) ;
  • Jun, Hang-Bae (Department of Environmental Engineering, Chungbuk National University) ;
  • Kwon, Soon-Ik (National Academy of Agricultural Science, Rural Development Administration) ;
  • Chae, Kyu-Jung (Kolon Engineering and Construction Co., Ltd.) ;
  • Park, Noh-Back (National Academy of Agricultural Science, Rural Development Administration)
  • 박우균 (농촌진흥청 국립농업과학원) ;
  • 전항배 (충북대학교 환경공학과) ;
  • 권순익 (농촌진흥청 국립농업과학원) ;
  • 채규정 (코오롱건설 기술연구소) ;
  • 박노백 (농촌진흥청 국립농업과학원)
  • Received : 2010.05.25
  • Accepted : 2010.06.20
  • Published : 2010.06.30

Abstract

This study was conducted to investigate the optimum conditions for efficient methane production through anaerobic digestion of pig waste slurry. The examined parameters were organic matter content of the pig slurry, the ratio of seed sludge to pig slurry, and stirring intensity of the digestion reactor. The effects of types of slurry produced from different purpose-based pigs fed with different feeds were also tested. The methane concentration in the produced biogas was 45% when the ratio of seed sludge to pig slurry was 50% and total solid (TS) concentration was 1%, and it increased in proportional to TS concentration increases from 3 to 7%. At 3 and 5% of TS concentration, increasing mixing velocity from 80 to 160 rpm resulted in higher biogas production amount. However, mixing amount of seed sludge did not cause any significant effect on biogas production. Overall, the most efficient biogas production was achieved at 3-5% TS concentration in combination with 50% seed sludge inoculation and mixing velocity at 120 rpm. Among pig slurry types, gestating sow waste slurry showed the highest biogas production probably due to higher the degradation rate than other types of pig waste slurry being affected by the feeds components.

돈분 슬러리를 이용한 혐기성 소화과정에서 유기물 농도 및 식종슬러지의 식종비율, 소화조의 혼합강도 등의 최적 실험조건을 도출하고, 돼지의 성장에 따른 사료 급여 특성과 분뇨의 성상이 바이오가스 발생에 미치는 영향을 관찰하였다. 식종슬러지 비율 50%와 TS 농도 1% 수준에서 메탄함량은 45%이었고, 유기물 함량이 3~7 %로 증가할수록 메탄가스 함량도 증가되었다. 반응조의 혼합강도에 따른 총 누적가스 발생량은 식종슬러지의 식종비율에 따른 영향은 관찰되지 않았고, TS 농도 3%와 5%에서 혼합강도를 증가시켰을 때(80 $\rightarrow$ 160 rpm) 바이오가스 발생량도 증가되었다. 돈분폐수의 혐기소화 실험시 바이오가스를 회수하고자 하는 최적의 운전 조건은 투입되는 TS 농도 3~5% 정도의 유기물 농도와 50% 수준의 식종슬러지의 식종비율 그리고 반응조의 적절한 교반강도(120 rpm) 따라 결정될 수 있다. 돈분뇨 종류에 따른 가스발생량은 분만돈 분뇨의 바이오 가스 발생량이 높았고, gas 발생의 peak(20일)도 짧게 나타나 분해율이 가장 좋은 것으로 나타났다. 돼지의 사육 및 소비 형태에 따라 돼지의 사육 환경이 변화되며, 투입되는 사료의 급여 특성도 달라져 바이오가스 발생 특성도 차이가 있는 것으로 나타났다.

Keywords

References

  1. Park, N.B., Park, S.M., Choi, W.Y. and Jun, H.B., 2009. Methane production and nitrogen removal from piggery wastewater in the TPAD coupled with BNR process, J. of Korean Soc. Wat. Qual. 25(1), 18-25.
  2. Ghosh, S., Conrad, J.R. and Klass, D.L., 1975. Anaerobic acidogenesis of waste water sludge, J. of WPCF, 47(1), 1126-1140.
  3. Raynal, J., Delgen, J.P. and Moletta, R., 1998. Twophase anaerobic digestion of solid waste by a multiple liquefaction reactors process, Bioresource Technology, 65(1-2), 97-103. https://doi.org/10.1016/S0960-8524(98)00009-1
  4. Oliva, E., Jacquart, J.C. and Prevot, C., 1990. Treatment for wastewater at the El Aguila brewery methanization in fluidized bed reactor, Wat. Sci. Tech., 22, 486-490.
  5. Ince, O., 1998. Performance of a 2-phase anaerobic digestion system when treating diary wastewater, Wat. Res., 32, 2707-2713. https://doi.org/10.1016/S0043-1354(98)00036-0
  6. Jeong, B.G., Lee, H.M., Youn, J.H., Chung, H.S. and Yang, B.S., 1996. Mixing effect on organic removal efficiency in treating low-strength wastewater using a modified anaerobic filter reactor, J. of Kor. Enviro. Sci. Soc., 5(4), 513-524.
  7. APHA, 1995. Standard methods for the examination of water and wastewater, American Public Health Association, Washington, D.C.
  8. Won, C.H., Kwon, J.H. and Rim, J.M., 2009. Effect of ammonia nitrogen loading rate on the anaerobic digestion of slurry-typed swine wastewater, J. of KORRA, 17(1), 49-57.
  9. WPCF, 1977. Wastewater treatment plant design, WPCE Manual of Practice 8, Water Pollution Control Federation, Washington, D.C.
  10. McCarty, P.L., 1964. Anaerobic waste treatment fundamentals, Part 1 : Chemistry and Microbiology, Public Works, Sept, 107-112.
  11. Henze, M. and Harrenmoes, P., 1983. Anaerobic treatment of wastewater in fixed film reactors literature reviews, Wat. Sci. Tech., 15, 1-101.
  12. Karim, K., Hoffmann, R., Klasson, K.T. and Al-Dahhan, M.H., 2005, Anaerobic digestion of animal waste : Effect of mode of mixing, Wat. Res., 39, 3579-3606. https://doi.org/10.1016/j.watres.2005.06.029
  13. Vesilind, P.A. and Richard, A.H., 1981, Effect of feed rate on air classifier performance, Resources and Conservation, 6(3-4), 211-221. https://doi.org/10.1016/0166-3097(81)90050-X
  14. NIAS, 2007. Korean feeding standard for swine, National Institute of Animal Science, RDA, Korea.
  15. Cho, J.K., Lee, J.S., Park, S.C. and Son, J.E., 1993, Evaluation of biochemical methane potential of typical korean food waste, J. of Kor. Solid. Wastes. Engin. Soc., 10(2), 211-217.
  16. Park, S.K., Choi, J.G. and Chung, Y.J., 2000, A practical study on the solid-liquid separation of the wastewater from slurry feedlot, J. of KOWREC, 8(2), 60-70.
  17. USEPA, 1997. A manual for developing biogas systems at commercial farms in the united states, Ag STAR Handbook, EPA-430-B-97-015, US Environmental Protection Agency, Atmospheric Pollution Prevention Division, Washington, D. C.

Cited by

  1. Solubilization Characteristics of Piggery Slurry by Different Storage type and Temperature Conditions vol.29, pp.4, 2010, https://doi.org/10.5338/KJEA.2010.29.4.348
  2. Evaluating Feeding of Organic Waste and Stirring Interval to Optimize Anaerobic Digestion vol.39, pp.4, 2014, https://doi.org/10.5307/JBE.2014.39.4.366
  3. A Study on the Optimal Conditions of the Biogas Sorting by Using the Polysulfone Membrane vol.20, pp.8, 2011, https://doi.org/10.5322/JES.2011.20.8.1011
  4. Evaluation of Solidified Fuel Value of Dairy Cattle Manure Digested by Semi-Dry Anaerobic Digestion Method vol.24, pp.4, 2016, https://doi.org/10.17137/korrae.2016.24.4.95