DOI QR코드

DOI QR Code

Biodegradation of Endosulfan by Klebsiella oxytoca KE-8 Immobilized on Activated Carbon

  • Jo, Min-Sub (School of Bioresource Sciences, Andong National University) ;
  • Lee, Jung-Bok (Dept. of Food & Nutrition Science, Kundong University) ;
  • Kim, Jang-Eok (School of Biosciences, Kyungpook National University) ;
  • Sohn, Ho-Yong (Dept. of Food & Nutrition, Andong National University) ;
  • Jeon, Chun-Pyo (School of Bioresource Sciences, Andong National University) ;
  • Choi, Chung-Sig (HansBio Co. Research Center) ;
  • Kwon, Gi-Seok (School of Bioresource Sciences, Andong National University)
  • Received : 2010.03.22
  • Accepted : 2010.05.10
  • Published : 2010.06.30

Abstract

Endosulfan degrading ability of Klebsiella oxytoca KE-8 immobilized by entrapment with activated carbon was examined. Endosulfan degradation by the immobilized bacterial strains on several different activated carbon based support materials was investigated. Based on results, activated carbon ($8\times30$ mesh) was chosen as a support material. The immobilized Klebsiella oxytoca KE-8 with the cell density of 4 mg $g^{-1}$ (dry weight) degraded 22.18 ug $ml^{-1}$ endosulfan within 5 days at pH 7.0, $30^{\circ}C$ in batch shake flask cultures. Also, we an experimented recycle packed bed column mode and continuous packed bed column mode for endosulfan degradation. Under optimum operation condition, the immobilized cells in a laboratory scale pack bed column with support beads were able to degrade endosulfan completely in defined minimal salt medium at a maximum rate of 129.6 ug $ml^{-1}$ per day. Moreover, the endosulfan degradation activity could be demonstrated at $4^{\circ}C$ for one month without significant decrease in activity. Results of this study suggest that immobilized cells of Klebsiella oxytoca KE-8 might be applicable to endosulfan contaminated site.

Keywords

References

  1. Awasthi, N., Manickam, N., Kumar, A. (1997) Biodegradation of endosulfan by a bacterial coculture. Bull. Environ. Contam. Toxicol. 59, 928-934. https://doi.org/10.1007/s001289900571
  2. Awasthi, N., Ahuja, R., Kumar, A. (1997) Factors influencing the degradation of soil-applied endosulfan isomers. Soil. Biology. Biochemistry. 32, 1697-1705. https://doi.org/10.1016/S0038-0717(00)00087-0
  3. Awasthi, N., Singh, A.K., Jain, R.K., Khangarot, B.S., Kumar, A. (2003) Degradation and detoxification of endosulfan isomers by a defined co-culture of two Bacillus strains. Appl. Microbiol. Biotechnol. 62, 279-283. https://doi.org/10.1007/s00253-003-1241-7
  4. Dhar, G.M., Shimura, M., Kimbara, K. (1998) Degradation of polychlorinated biphenyl by cells of Rhodococcus opacus strain TSP203 immobilized in alginate and in solution. Enzyme Microb. Technol. 23, 34-41. https://doi.org/10.1016/S0141-0229(98)00008-8
  5. Ehrhardt, H.M., Rehm, H.J. (1985) Phenol degradation by microorganisms adsorbed on activated cabon. Appl Microbiol Biotechnol. 21, 32-36.
  6. Ehrhardt, H.M., Rehm, H.J. (1989) Semicontinuous and continuous degradation of phenol by Pseudomonas putida P8 adsorbed on activated carbon. Appl. Microbiol. Biotechnol. 30, 312-317.
  7. Jianlong, W., Xiangchun, Q., Liping, H., Yi, Q., Hegemann, W. (2002) Microbial degradation of quinoline by immobilized cells of Burkholderia pickettii. Water Res. 36, 2288-2296. https://doi.org/10.1016/S0043-1354(01)00457-2
  8. Karigar, C., Mahesh, A., Nagenahalli, M., Yun, D.J. (2006) Phenol degradation by immobilized cells of Arthrobacter citreus. Biodegradation. 17, 47-55. https://doi.org/10.1007/s10532-005-3048-y
  9. Khaled, A.S., Gedaliah, S., Dan, L., Robert, A., Carlos, G.D. (1996) Microbial degradation of aromatic and polyaromatic toxic compounds adsorbed on powdered activated carbon. J. Biotechnol. 51, 265-272. https://doi.org/10.1016/S0168-1656(96)01605-7
  10. Kok, F.N., Arica, M.Y., Hahcigil, C., Alaeddinoglu, G., Hasirci, V. (1999) Biodegradation of aldicarb in a packed-bed reactor by immobilized Methylosinus. Enzyme Microb. Technol. 24, 291-296. https://doi.org/10.1016/S0141-0229(98)00124-0
  11. Kullman, S.W., Matsumura, F. (1996) Metabolic pathways utilized by Phanerochaete chrysosporium for degradation of the cyclodiene pesticide endosulfan. Appl. Environ. Microbiol. 62, 593-600.
  12. Kwon, G.S., Sohn, H.Y., Shin, K.S., Kim, E., Seo, B.I. (2005) Biodegradation of the organochlorine insecticide, endosulfan, and the toxic metabolite, endosulfan sulfate, by Klebsiella oxytoca KE-8. Appl. Microbiol. Biotechnol. 67, 845-850. https://doi.org/10.1007/s00253-004-1879-9
  13. Lee, J.B., Sohn, H.Y., Shin, K.S., Jo, M.S., Kim, J.E., Lee, S.W., Shin, J.W., Kum, E.J., Kwon, G.S. (2006) Isolation of a soil bacterium capable of biodegradation and detoxification of endosulfan and endosulfan sulfate. J. Agric. Food. Chem. 54, 8824-8828. https://doi.org/10.1021/jf061276e
  14. Miles, J.R., Moy, P. (1979) Degradation of endosulfan and its metabolites by a mixed culture of soil microorganisms. Bull. Environ. Contam. Toxicol. 23, 13-19. https://doi.org/10.1007/BF01769908
  15. Mordocco, A., Kuek, C., Jenkins, R. (1999) Continuous degradation of phenol at low concentration using immobilized Pseudomonas putida. Enzyme Microb. Technol. 25, 530-536.
  16. Morsen, A., Rehm, H.J. (1987) Degradation of phenol by a mixed culture of Pseudomonas putida and Cryptococcus elinovii adsorbed on activated carbon. Appl. Microbiol. Biotechnol. 26, 283-288. https://doi.org/10.1007/BF00286325
  17. Morsen, A., Rehm, H.J. (1990) Degradation of phenol by a defined mixed culture immobilized by adsorption on activated carbon and sintered glass. Appl. Microbiol. Biotechnol. 33, 206-212.
  18. Murakami, N.T., Kirimura, K., Kino, K. (2003) Degradation of dimethyl sulfoxide by the immobilized cells of Hyphomicrobium denitrificans WU-K217. J. Biosci. Bioeng. 15, 199-204.
  19. Pai, S.L., Hsu, Y.L., Chong, N.M., Sheu, C.S., Chen, C.H. (1995) Continuous degradation of phenol by Rhodococcus sp. immobilized on granuar activated carbon and in calcium alginate. Bioresource. Technology. 51, 37-42. https://doi.org/10.1016/0960-8524(94)00078-F
  20. Pazarlioglu, N.K., Telefoncu, A. (2005) Biodegradation of phenol by Pseudomonas putida immobilized on activated pumice particles. Process Biochemistry. 40, 1807-1814. https://doi.org/10.1016/j.procbio.2004.06.043
  21. Prieto, M.B., Hidalgo, A., Serra, J.L., Llama, M.J. (2002) Degradation of phenol by Rhodococcus erythropolis UPV-1 immobilized on biolite in a packed-bed reactor. Appl. Microbiol. Biotechnol. 97, 1-11.
  22. Rahman, R.N.Z.A., Ghazali, F.M., Salleh, A.B., Basri, M. (2006) Biodegradation of hydrocarbon contamination by immobilized bacterial cells. J. Microbiol. 44, 354-359.
  23. Sethunathan, N., Megharaj, M., Chen, Z., Singh, N., Kookana, R.S., Naidu, R. (2002) Persistence of endosulfan and endosulfa sulfate in soil as affected by moisture regime and organic matter addition. Bill. Environ. Contam. Toxicol. 68, 725-731. https://doi.org/10.1007/s001280314
  24. Siddique, T., Okeke, B.C., Arshad, M., Frankenberger, W.T. (2003)a. Enrichment and isolation of endosulfan-degrading microorganisms. J. Environ. Qual. 32, 47-54. https://doi.org/10.2134/jeq2003.0047
  25. Siddique, T., Okeke, B.C., Arshad, M., Frankenberger, W.T. (2003)b. Biodegradation kinetics of endosulfan by Fusarium ventricosum and a Pandoraea species. J. Agric. Food. Chem. 51, 8015-8109. https://doi.org/10.1021/jf030503z
  26. Sutherland, T.D., Home, I., Lacey, M.J., Harcourt, R.L., Russell, R.J., Oakeshott, J.G. (2000) Enrichment of an endosulfan-degrading mixed bacterial culture. Appl. Environ. Microbiol. 66, 2822-2828. https://doi.org/10.1128/AEM.66.7.2822-2828.2000
  27. Sutherland, T.D., Home, I., Russell, R.J., Oakeshott, J.G. (2002) Gene cloning and molecular characterization of a two-enzyme system catalyzing the oxidative detoxification of ${\beta}$-endosulfan. Appl. Environ. Microbiol. 68, 6237-6245. https://doi.org/10.1128/AEM.68.12.6237-6245.2002
  28. Sutherland, T.D., Home, I., Weir, K.M., Russell, R.J., Oakeshott, J.G. (2004) Toxicity and residues of endosulfan isomers. Rev. Environ. Contam. Toxicol. 183, 99-113. https://doi.org/10.1007/978-1-4419-9100-3_4
  29. Suzuki, T., Yamaguchi, T., Ishida, M. (1998) Immobilization of Prototheca zopfii in calcium- alginate beads for the degradation of hydrocarbons. Process. Biochemistry. 33, 541-546. https://doi.org/10.1016/S0032-9592(98)00022-3

Cited by

  1. Culture Method of Spore for Entomopathogenic Fungus Using Natural Zeolite Ceramic Ball vol.35, pp.1, 2016, https://doi.org/10.5338/KJEA.2016.35.1.08
  2. Halophilic bacterium JAS4 in biomineralisation of endosulfan and its metabolites isolated from Gossypium herbaceum rhizosphere soil vol.45, pp.4, 2014, https://doi.org/10.1016/j.jtice.2014.01.013
  3. Use of Ca-alginate immobilized Pseudomonas aeruginosa for repeated batch and continuous degradation of Endosulfan vol.6, pp.2, 2016, https://doi.org/10.1007/s13205-016-0438-2