DOI QR코드

DOI QR Code

Evaluation for Applicability of GIS Based Multi-Directional Flow Allocation Model

GIS기반 다방향 흐름 분배 모형의 적용성 검토

  • Choi, Seung-Yong (School of Archi. & Civil Engineering, Kyungpook National Univ.) ;
  • Lee, Won-Ha (Lotte Engineering & Construction) ;
  • Han, Kun-Yeun (School of Archi. & Civil Engineering, Kyungpook National Univ.) ;
  • Kim, Keuk-Soo (River, Coastal and Harbor Research Division, Korea Institute of Construction Technology)
  • 최승용 (경북대학교 공과대학 건축.토목공학부) ;
  • 이원하 (롯데건설) ;
  • 한건연 (경북대학교 공과대학 건축.토목공학부) ;
  • 김극수 (한국건설기술연구원 하천해안항만연구실)
  • Received : 2010.07.22
  • Accepted : 2010.11.09
  • Published : 2010.12.30

Abstract

The objective of this study is to evaluate the applicability of GIS based multi-directional flow allocation model. In order to evaluate the suggested model in this study, it was applied to real watersheds, Pyeongchang and Soyang river basin. The simulation results were compared with observed values, and showed good agreements. The improvement of accuracy and reduction of simulation time were carried out by applying multi-directional flow allocation. Accordingly, the applied methodologies presented in this study will be used to predict accurate runoff, which plays a major role in integrated flood management. If this model is combined with the techniques of rainfall forecasting, it will contribute to the real-time flood forecasting and warning in the future.

본 연구의 목적은 GIS 기반 다방향 흐름 분배 모형의 적용성을 평가하는데 있다. 개발된 모형의 적용성을 평가하기 위해서 평창강, 소양강 유역을 포함한 실제 유역에 대해 적용하고 모의 결과를 실측치와 비교하였다. 모의 결과를 실측치와 비교한 결과 실측치와 비교적 잘 일치함을 확인할 수 있었다. 또한 다방향 흐름분배의 적용을 통해 정확도의 향상과 계산 소요시간의 단축을 확인할 수 있었다. 향후 유역 유출 산정에 있어 본 연구에서 개발된 다방향 흐름 분배 알고리즘을 적용하면 조금 더 정확한 유출량을 계산할 수 있을 것으로 판단된다.

Keywords

References

  1. 건설교통부. 2003. 한국수문조사연보.
  2. 건설교통부. 2004. 한국수문조사연보.
  3. 건설교통부. 2005. 한국수문조사연보.
  4. 건설교통부. 2007 한국수문조사연보.
  5. 고덕구. 1989. 소유역의 장기유출예측을 위한 모의 발생수문모형의 개발. 박사학위논문. 서울대학교.
  6. 김대식, 정하우, 김성준, 최진용. 1995. 소유역 지표유출의 공간적 해석을 위한 지리전보시스템 응용모형(II) -격자 물수지모형을 위한 GIS 응용모형 개발-. 한국농공학회지 37(5):35-42.
  7. 김문모, 이정우, 이재응. 2007. 격자기반의 도시유역 지표면 유출모형의 개발 및 적용. 한국수자원학회논문집. 40(1):25-38.
  8. 김성준. 1998. 격자기반의 운동파 강우유출모형 개발(I) -이론 및 모형-. 한국수자원학회논문집. 31(3):303-308.
  9. 김성준, 채효석, 신사철. 1998. 격자기반의 운동파 강우유출모형 개발(II) -적용 예(연천댐유역을 대상으로)-. 한국수자원학회논문집. 31(3):309-316.
  10. 박진혁, 강부식. 2006. 댐 유역 홍수예측을 위한 GIS기반의 분포형 모형과 집중형 모형의 유출해석 비교. 한국지리정보학회지 9(3):171-182.
  11. 박진혁, 강부식, 이근상, 이을래. 2007. 레이더 강우와 Vflo모형을 이용한 남강댐 홍수유출 해석. 한국지리정보학회지 10(3):13-21.
  12. 신철균, 조효섭, 정관수, 김재한. 2004. 저류함수기법을 이용한 격자기반의 강우-유출 모형의 개발. 한국수자원학회논문집. 37(11):969-978.
  13. 정인균, 이미선, 박종윤, 김성준. 2008a. 격자기반 운동파 강우유출모형 KIMSTORM의 개선(I) − 이론 및 모형 −. 대한토목학회논문집. 28(6b):697-707.
  14. 정인균, 신형진, 박진혁, 김성준. 2008b. 격자기반 운동파 강우유출모형 KIMSTORM의 개선(I) − 적용 및 분석 −. 대한토목학회논문집. 28(6b):709-721.
  15. 최현상, 한건연. 2004a. GIS와 불확실도 해석기법을 이용한 분포형 강우-유출 모형의 개발 (I) - 이론 및 모형의 개발 -. 한국수자원학회논문집. 37(4):329-339.
  16. 최현상, 한건연. 2004b. GIS와 불확실도 해석기법을 이용한 분포형 강우-유출 모형의 개발 (II) - 적용 및 분석 -. 한국수자원학회논문집. 37(4):341-352.
  17. 홍준범, 김병식, 윤석영. 2006. $Vflo^{\TM}$ 모형을 이용한 물리기반 분포형 수문모형의 정확성 평가. 대한토목학회논문집. 26(6):613-622.
  18. Abbott, M.B., J.C. Bathurst, J.A. Cunhem, P.E. O'Connel and J. Rasmussen. 1986. An Introduction to European Hydrological System-Systeme Hydrologique Europeen, (SHE): Structure of a Physically-Based Distributed Modeling System. Journal of Hydrology. 87: 61-77. https://doi.org/10.1016/0022-1694(86)90115-0
  19. Beven, K. 1989. Changing ideas in hydrology - the case of physically based models. Journal of Hydrology. 105:157-172. https://doi.org/10.1016/0022-1694(89)90101-7
  20. Costa-Cabral, M.C. and S.J. Burges. 1994. Digital elevation model networks(DEMON): A model of flow over hillslopes for computation of contributing and dispersal areas. Water Resources Research. 30:1681-1692. https://doi.org/10.1029/93WR03512
  21. Downer, C.W. and F.L. Ogden. 2002. GSSHA User's Manual. Gridded Surface-Subsurface Hydrologic Analysys. Version 1.43 for WMS 6.1. EDRL Technical Report. Engineering Research and Development Center. U.S. Army Corps of Engineers. Vicksburg.
  22. Fairfield, J. and P. Leymarie. 1991. Drainage networks from grid Digital Elevation Models. Water Resources Research. 27:709-717. https://doi.org/10.1029/90WR02658
  23. Grayson, R.B., I.D. Moore and T.A. McMahon. 1992a. Physically-based hydrologic modeling, 1. A terrain-based model for investigative purpose. Water Resources Research. 28: 2639-2658. https://doi.org/10.1029/92WR01258
  24. Grayson, R.B., I.D. Moore and T.A. McMahon. 1992b. Physically-based hydrologic modeling: 2. Is the concept realistic? Water Resources Research. 26:2659-2666.
  25. Holmgren, P. 1994. Multiple flow direction algorithms for runoff modeling in grid based elevation models: An empirical evaluation. Hydrological Processes. 8:327-334. https://doi.org/10.1002/hyp.3360080405
  26. Julien, P.Y. and B. Saghafian. 1991. CASC2D User's Manual, A Two-Dimensional Watershed Rainfall-Runoff Model. Center for Geosciences - Hydrologic Modeling Group. Colorado State University (CER90-91PYJ-BS-12).
  27. Lea, N.L. 1992. An aspect driven kinematic routing algorithm. Hydraulics and Erosion Mechanics. London. University College London Press. pp.393-407.
  28. Moore, I.D. and G.R. Foster. 1990. Hydraulics and overland flow. Process Studies in Hillslope Hydrology. Wiley. New York. pp.215-252.
  29. Moor, I.D. and J.C. Gallant. 1991. Overview of Hydrological and water quality modeling the Fate of Chemicals in the Environment. Center for Resource and Environmental Studies. Australian University. Canberra. pp. 1-8.
  30. Moor, I.D. and R.B. Grayson. 1991. Terrain-based catchment partitioning and runoff prediction using vector elevation data. Water Resources Research. 27:1177-1191. https://doi.org/10.1029/91WR00090
  31. Moor, I.D., R.B. Grayson and A.R. Ladson. 1991. Digital terrain modeling: A review of hydrological, geomorphological, and biological applications. Hydrological Process. 5:3-30. https://doi.org/10.1002/hyp.3360050103
  32. Ogden, F.L. 1997. Premier: Using WMS for CASC2D Data Development. Brigham Young University. Provo. UT.
  33. O'Loughlin, E.M. 1986. Prediction of surface saturation zones in natural catchments by topographic analysys. Water Resources Research. 22:794-804. https://doi.org/10.1029/WR022i005p00794
  34. Onstad, C.A. and D.L. Brakensiek. 1968. Watershed simulation by stream path analogy. Water Resources Research. 4:965-971. https://doi.org/10.1029/WR004i005p00965
  35. Quinn, P.F., K.J. Beven, P. Chevallier and O. Planchon. 1991. The Prediction of hillslope flow paths for distributed hydrological modeling using digital terrain models. Hydrological Processes. 5:59-79. https://doi.org/10.1002/hyp.3360050106
  36. Rawls, W.J., D.L. Brakensiek and N. Miller. 1983. Green-Ampt infiltration parameters from soil data. Journal of Hydraulic Division 109(1):62-70. https://doi.org/10.1061/(ASCE)0733-9429(1983)109:1(62)
  37. Rojas, R. 2002. GIS-based upland erosion modeling, geovisualization and grid size effects on erosion simulations with CASD2D-SED. PhD thesis Department of Civil Engineering. Colorado State University. Fort collins. Colorado.
  38. Vieux, B.E. 2004. Distributed Hydrologic Modeling Using GIS. Kluwer Academic Publishers, Dordrecht, Netherlands.
  39. Vieux, B.E. and J.E. Vieux. 2002. $Vflo^{TM}:$ A Real-Time Distributed Hydrologic Model. Proceedings of 2nd Federal Interagency Hydrologic Modeling Conference(Parer on CD-ROM).
  40. Wise, S.M. 1998. The effect of GIS interpolation errors on the use of digital elevation models in geomorphology. In Lane, S.N., Richard, K.S., and Chandler, J.H.(eds.) Lanform Monitoring, Modeling and Analysis, Wiley and Sons, NewYork, pp. 139-164.