DOI QR코드

DOI QR Code

Effect of cultivar and ascorbic acid on in vitro shoot regeneration and development of bombardment-mediated plastid transformation of tomato (Lycopersicon esculentum)

토마토 재분화 효율 향상 및 엽록체 형질전환 조건

  • Roh, Kyung-Hee (Department of Agricultural Bio-resources, National Academy of Agricultural Science, RDA) ;
  • Lee, Ki-Jong (Department of Agricultural Bio-resources, National Academy of Agricultural Science, RDA) ;
  • Park, Jong-Sug (Department of Agricultural Bio-resources, National Academy of Agricultural Science, RDA) ;
  • Kim, Jong-Bum (Department of Agricultural Bio-resources, National Academy of Agricultural Science, RDA) ;
  • Lee, Seung-Bum (Department of Agricultural Bio-resources, National Academy of Agricultural Science, RDA) ;
  • Suh, Seok-Cheol (Department of Agricultural Bio-resources, National Academy of Agricultural Science, RDA)
  • 노경희 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 이기종 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 박종석 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 김종범 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 이승범 (농촌진흥청 국립농업과학원 농업생명자원부) ;
  • 서석철 (농촌진흥청 국립농업과학원 농업생명자원부)
  • Received : 2010.03.10
  • Accepted : 2010.03.18
  • Published : 2010.03.31

Abstract

Eighteen cultivars of tomato were tested for their regeneration response. Lycopersicon esculentum cv. 2001-58 showed a very high frequency of regeneration (93%). We evaluated the effect of two compounds with known antioxidant activity (ascorbic acid and cystein). The use of ascorbic acid ($200\;-\;300\;{\mu}M/L$) has a positive effect on shoot regeneration. To develope a system for plastid transformation in tomato via homologous recombination, we constructed the tomato plastid expression vector (pKRT22-AG) harboring 2.2 kb flanking sequences cloned from intact plastid genome and gfp gene. To investigate the factors affecting the delivery system of the pKRT22-AG into chloroplast using bombardment, We assessed the optimal DNA concentration, gold particle volume and target distance. Expression of the GFP protein was observed within chloroplast on protoplast of cotyledon explant by confocal laser scanning microscopy, which indicates that the protocol developed in this study be useful for the production of plastid transgenic plants in tomato.

국립원예특작과학원에서 분양받은 토마토 18계통을 공시하여 재분화가 잘되는 적정 품종을 탐색한 결과, 계통번호 2001-58에서의 재분화율이 93%로 양호하였다. 또한 식물체로의 재분화 과정에서 보여 지는 갈변현상과 phenolic compound에 의한 식물조직의 괴사현상을 막기 위하여 항산화제인 ascorbic acid와 cystein을 단용 또는 혼용으로 첨가한 후 토마토 재분화에 미치는 영향을 살펴 본 결과, ascorbic acid $200{\sim}300\;{\mu}M/L$ 처리구에서 줄기형성율 및 생체중이 증가되는 현상을 관찰할 수 있었다. 토마토 엽록체 형질전환체 선발을 위해 spectinomycin의 적정 농도를 살펴본 결과, 재분화배지에 spectinomycin 20~25 mg/L 농도가 첨가되어진 처리구에서 재분화가 거의 이루어지지 않았다. 토마토 엽록체 형질전환을 위해 토마토 엽록체 게놈 일부를 분리하여 염기서열을 분석하여 담배와 비교 분석한 결과, homology가 매우 높음을 알 수 있었다. Homologous recombination에 의한 엽록체 형질전환이 되기 위해서 분리한 토마토 엽록체 게놈 일부를 border sequence로 이용하였고, transient assay를 위해 GFP 유전자가 포함된 토마토 엽록체 형질전환용 운반체 pKRT22-AG를 제작하였다. Bombardment을 한 후 원형질체를 나출하여 공초점 현미경하에서 관찰한 결과 엽록체 내에서만 GFP가 발현됨을 알 수 있었으며, DNA 농도 $1\;{\mu}g$, $0.6\;{\mu}m$ gold particle 1 mg, target distance 9 cm 조건이 가장 좋았다.

Keywords

References

  1. Anthony JM, Senaratna T, Dixon KW, Sivasithamparam K (2004) The role of antioxidants for initiation of somatic embryos with Conostephium pendulum (Ericaceae). Plant Cell Tiss Org Cult 78:247-252 https://doi.org/10.1023/B:TICU.0000025661.56250.b4
  2. Cerutti H, Osman M, Grandoni P, Jagendorf AT (1992) A homolog of Escherichia coli RecA protein in plastids of higher plants. Proc Natl Acad Sci USA 89:8068-8072 https://doi.org/10.1073/pnas.89.17.8068
  3. Cortina C, Culianez-Macia FA (2004) Tomato transformation and transgenic plant production. Plant Cell Tiss Org Cult 76:269-275 https://doi.org/10.1023/B:TICU.0000009249.14051.77
  4. Daniell H, Datta R, Varma S, Gray S, Lee SB (1998) Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nature Biotechnology 16:345-348 https://doi.org/10.1038/nbt0498-345
  5. Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nature Biotechnology 20:581-586
  6. DeCosa B, Moar W, Lee SB, Miller M, Daniell H (2001) Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nature Biotechnology 19:71-74 https://doi.org/10.1038/83559
  7. Dufourmantel N, Pelissier B, Garcon F, Peltier G, Feullo JM, Tissot G (2004) Generation of fertile transplastomic soybean. Plant Moleular Biology 55:479-489 https://doi.org/10.1007/s11103-004-0192-4
  8. Fernandez-San, MA, Mingo-Castel A, Miller M, Daniell H (2003) A chloroplast transgenic approach to hyper express and purify human serum albumin, a protein highly susceptible to proteolytic degradation. Plant Biotechnology J 1:71-79 https://doi.org/10.1046/j.1467-7652.2003.00008.x
  9. Giddings G, Allison G, Brooks D, Carter A (2000) Transgenic plants as factories for biopharmaceuticals. Nature Biotechnol 18:1151-1155 https://doi.org/10.1038/81132
  10. Hou BK, Zhou YH, Wan LH, Zhang ZL, Shen GF, Chen ZH, Hu ZM. (2003) Chloroplast transformation in oilseed rape. Transgenic Res 12:111-114 https://doi.org/10.1023/A:1022180315462
  11. Iamtham S, Day A (2000) Removal of antibiotic resistance genes from transgenic tobacco plastids. Nat Biotechnol 18:1172-1176 https://doi.org/10.1038/81161
  12. Kavanagh TA, Thanh ND, Lao NT, McGrath N, Peter SO, Horvath EM, Dix PJ, Medgyesy P (1999) Homologous plastid DNA transformation in tobacco is mediated by multiple recombination events. Genetics 152:1111-1122
  13. Kota M, Daniell H, Varma S, Garczynski SF, Gould F, Moar WJ (1999) Overexpression of the Bacillus thuringiensis(Bt) Cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insects. Proc Natl Acad Sci USA 96:1840-1845 https://doi.org/10.1073/pnas.96.5.1840
  14. Kumar, S, Dhingra A, Daniell H (2004) Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. Plant Molecular Biology 56:203-216 https://doi.org/10.1007/s11103-004-2907-y
  15. Lee SB, Kwon HB, Kwon SJ, Park SC, Jeong MJ, Han SE, Byun MO, Daniell H (2003) Accumulation of trehalose within transgenic chloroplasts confers drought tolerance. Mol Breed 11:1-13 https://doi.org/10.1023/A:1022100404542
  16. Maliga P (1993) Towards plastid transformation in flowering plants. Tibtech 11:101-107 https://doi.org/10.1016/0167-7799(93)90059-I
  17. Maliga P, Staub J, Carrer H, Kanewski I, Svar Z (1994) Homologous recombination and integration of foreign DNA in plastids of higher plants. In: Homologous Recombination and Gene Silencing in Plants, Kluwer Academic Publishers, The Netherlands
  18. McBride KE, Svab Z, Schaaf DJ, Hogan PS, Stalker DM, Maliga P (1995) Amplification of a chimeric Bacillusgene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Bio/Technology 13:362-365 https://doi.org/10.1038/nbt0495-362
  19. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  20. Palmer JD, Osorio B, Aldrich J, Thompson WF (1987) Chloroplast DNA evolution among leguems: Loss of a large inverted repeat occurred prior to other sequence rearrangements. Curr Genet 11:275-286 https://doi.org/10.1007/BF00355401
  21. Palmer JD, Osorio B, Thompson WF (1988) Evolutionary significance of inversions in legume chloroplast DNAs. Curr Genet 14:65-74 https://doi.org/10.1007/BF00405856
  22. Roh KH, Shin KS, Lee YH, Seo SC, Park HG, Daniell H, Lee SB (2006) Accumulation of sweet protein monellin is regulated by the psbA 5'UTR in tobacco chloroplasts. Journal of Plant Biology 49:34-43 https://doi.org/10.1007/BF03030786
  23. Ruf S, Hermann M, Berger I, Carrer H, Bock R (2001) Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat Biotechnol 19:870-875 https://doi.org/10.1038/nbt0901-870
  24. Sidorov VA, Kasten D, Pang SZ, Hajdukiewicz PT, Staub JM, Nehra NS (1999) Technical advance: stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. Plant J 19:209-216 https://doi.org/10.1046/j.1365-313X.1999.00508.x
  25. Sikdar SR, Serino G, Chaudhuri S, Maliga P (1998) Plastid transformation in Arabidopsis thaliana. Plant Cell Rep 18:20-24 https://doi.org/10.1007/s002990050525
  26. Staub JM, Graves B, Graves J, Hajdukiewicz PT, Hunter P, Nehra N, Paradkar V, Schlittler M, Carroll JA, Spatola L, Ward D, Ye G, Russell DA (2000) High-yield production of a human therapeutic protein in tobacco chloroplasts. Nat Biotechnol 18:333-338 https://doi.org/10.1038/73796
  27. Staub JM, Maliga P (1992) Long regions of homologous DNA are incorporated into the tobacco plastid genome by transformation. The Plant Cell 4:39-45 https://doi.org/10.2307/3869380
  28. Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA 90:913-917 https://doi.org/10.1073/pnas.90.3.913
  29. Wakasugi T, Sugita M, Tsudzuki T, Sugiura M (1998) Updated gene map of tobacco chloroplast DNA. Plant Molecular Biology Reporter 16:231-241 https://doi.org/10.1023/A:1007564209282

Cited by

  1. Production of Transgenic Plants in Brassica napus Winter Cultivar 'Youngsan' vol.54, pp.1, 2011, https://doi.org/10.3839/jabc.2011.005
  2. Effects of ascorbic acid, citric acid and silver nitrate on the growth of in vitro lily plantlets and reduction of browning vol.40, pp.4, 2013, https://doi.org/10.5010/JPB.2013.40.4.224