DOI QR코드

DOI QR Code

Three-Axis Autopilot Design for a High Angle-Of-Attack Missile Using Mixed H2/H Control

  • Won, Dae-Yeon (Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology) ;
  • Tahk, Min-Jea (Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Yoon-Hwan (LIG Nex1 Co.)
  • Published : 2010.06.15

Abstract

We report on the design of a three-axis missile autopilot using multi-objective control synthesis via linear matrix inequality techniques. This autopilot design guarantees $H_2/H_{\infty}$ performance criteria for a set of finite linear models. These models are linearized at different aerodynamic roll angle conditions over the flight envelope to capture uncertainties that occur in the high-angle-of-attack regime. Simulation results are presented for different aerodynamic roll angle variations and show that the performance of the controller is very satisfactory.

Keywords

References

  1. Blakelock, J. H. (1991). Automatic Control of Aircraft and Missiles. 2nd ed. New York: Wiley.
  2. Chilali, M. and Gahinet, P. (1996). H(infinity) design with pole placement constraints: an LMI approach. IEEE Transactions on Automatic Control, 41, 358-367. https://doi.org/10.1109/9.486637
  3. Choi, B. H., Kang, S. H., Kim, H. J., Won, D. Y., Kim, Y. H., Jun, B. E., and Lee, J. I. (2008). Roll-pitch-yaw integrated H(infinity) controller synthesis for high angle-of-attack missiles. KSAS International Journal, 9, 66-75. https://doi.org/10.5139/IJASS.2008.9.1.066
  4. Devaud, E., Harcaut, J. P., and Siguerdidjane, H. (2001). Threeaxes missile autopilot design: From linear to nonlinear control strategies. Journal of Guidance, Control, and Dynamics, 24, 64-71. https://doi.org/10.2514/2.4676
  5. Gahinet, P. and Apkarian, P. (1994). Linear matrix inequality approach to H(infinity) control. International Journal of Robust and Nonlinear Control, 4, 421-448.
  6. Gahinet, P., Nemirovski, A., Laub, A. J., and Chilali, M. (1995). The LMI Control Toolbox User’s Guide. The MathWorks, Inc.
  7. Hemsch, M. J. (1992). Tactical Missile Aerodynamics: General Topics. Washington, DC: American Institute of Aeronautics and Astronautics.
  8. Kim, Y. H., Won, D. Y., Kim, T. H., Tahk, M. J., Jun, B. E., Lee, J. I., and An, J. Y. (2008). Integrated roll-pitch-yaw autopilot design for missiles. KSAS International Journal, 9, 129-136. https://doi.org/10.5139/IJASS.2008.9.1.129
  9. Schere, C., Gahinet, P., and Chilali, M. (1997). Multi-objective output-feedback control via LMI optimization. IEEE Transactions on Automatic Control, 42, 896-911. https://doi.org/10.1109/9.599969
  10. Shamma, J. S. and Athans, M. (1992). Gain scheduling: potential hazards and possible remedies. IEEE Control Systems Magazine, 12, 101-107. https://doi.org/10.1109/37.165527
  11. Shamma, J. S. and Cloutier, J. R. (1993). Gain-scheduled missile autopilot design using linear parameter varying transformations. Journal of Guidance, Control, and Dynamics, 16, 256-263. https://doi.org/10.2514/3.20997
  12. White, B. A., Bruyere, L., and Tsourdos, A. (2007). Missile autopilot design using quasi-LPV polynomial eigenstructure assignment. IEEE Transactions on Aerospace and Electronic Systems, 43, 1470-1483. https://doi.org/10.1109/TAES.2007.4441752

Cited by

  1. A probabilistic robust mixed H2/H∞ fuzzy control method for hypersonic vehicles based on reliability theory vol.15, pp.1, 2018, https://doi.org/10.1177/1729881417754153
  2. Missile acceleration controller design using proportional–integral and non-linear dynamic control design method vol.226, pp.8, 2012, https://doi.org/10.1177/0954410011417510
  3. Multi-model approaches to three-axis missile autopilot design under aerodynamic roll angle uncertainty vol.226, pp.9, 2012, https://doi.org/10.1177/0954410011418751