DOI QR코드

DOI QR Code

CONTINUOUS CHARACTERIZATION OF THE TRIEBEL-LIZORKIN SPACES AND FOURIER MULTIPLIERS

  • Cho, Yong-Kum (DEPARTMENT OF MATHEMATICS COLLEGE OF NATURAL SCIENCE CHUNG-ANG UNIVERSITY)
  • Received : 2009.03.09
  • Published : 2010.07.31

Abstract

We give a set of continuous characterizations for the homogeneous Triebel-Lizorkin spaces and use them to study boundedness properties of Fourier multiplier operators whose symbols satisfy a generalization of H$\ddot{o}$rmander's condition. As an application, we give new direct proofs of the imbedding theorems of the Sobolev type.

Keywords

References

  1. H.-Q. Bui, M. Paluszynski, and M. Taibleson, A maximal function characterization ofweighted Besov-Lipschitz and Triebel-Lizorkin spaces, Studia Math. 119 (1996), no. 3,219–246.
  2. H.-Q. Bui, M. Paluszynski, and M. Taibleson, Characterization of the Besov-Lipschitz and Triebel-Lizorkin spaces. The caseq < 1, J. Fourier Anal. Appl. 3 (1997), Special Issue, 837–846.
  3. H.-Q. Bui and M. Taibleson, The characterization of the Triebel-Lizorkin spaces forp = ${\infty}$, J. Fourier Anal. Appl. 6 (2000), no. 5, 537–550. https://doi.org/10.1007/BF02511545
  4. A. P. Calderon, Lebesgue spaces of differentiable functions and distributions, Proc. Sympos. Pure Math., Vol. IV pp. 33–49 American Mathematical Society, Providence, R.I.,1961.
  5. A. P. Calderon and A. Torchinsky, Parabolic maximal functions associated with a distribution,Advances in Math. 16 (1975), 1–64. https://doi.org/10.1016/0001-8708(75)90099-7
  6. Y.-K. Cho, Strichartz’s conjecture on Hardy-Sobolev spaces, Colloq. Math. 103 (2005),no. 1, 99–114. https://doi.org/10.4064/cm103-1-11
  7. Y.-K. Cho and J. Kim, Atomic decomposition on Hardy-Sobolev spaces, Studia Math.177 (2006), no. 1, 25–42. https://doi.org/10.4064/sm177-1-3
  8. C. Fefferman and E. M. Stein, $H^p$ spaces of several variables, Acta Math. 129 (1972),no. 3-4, 137–193. https://doi.org/10.1007/BF02392215
  9. M. Frazier and B. Jawerth, A discrete transform and decompositions of distributionspaces, J. Funct. Anal. 93 (1990), no. 1, 34–170. https://doi.org/10.1016/0022-1236(90)90137-A
  10. M. Frazier, B. Jawerth, and G. Weiss, Littlewood-Paley Theory and the Study of Function Spaces, CBMS Regional Conference Series in Mathematics, 79. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1991.
  11. L. Grafakos, Classical and Modern Fourier Analysis, Pearson Education, Inc., UpperSaddle River, NJ, 2004.
  12. B. Jawerth, Some observations on Besov and Lizorkin-Triebel spaces, Math. Scand. 40(1977), no. 1, 94–104. https://doi.org/10.7146/math.scand.a-11678
  13. J. Johnsen and W. Sickel, A direct proof of Sobolev embeddings for quasi-homogeneousLizorkin-Triebel spaces with mixed norms, J. Funct. Spaces Appl. 5 (2007), no. 2, 183–198. https://doi.org/10.1155/2007/714905
  14. J. Peetre, On spaces of Triebel-Lizorkin type, Ark. Mat. 13 (1975), 123–130. https://doi.org/10.1007/BF02386201
  15. E. M. Stein, Harmonic Analysis : Real-Variable Methods, Orthogonality, and OscillatoryIntegrals, Princeton Univ. Press, 1993.
  16. R. Strichartz, Bounded mean oscillation and Sobolev spaces, Indiana Univ. Math. J. 29(1980), no. 4, 539–558. https://doi.org/10.1512/iumj.1980.29.29041
  17. R. Strichartz, $H^p$ Sobolev spaces, Colloq. Math. 60/61 (1990), no. 1, 129–139.
  18. H. Triebel, Spaces of distributions of Besov type on Euclidean n-space. Duality, interpolation,Ark. Mat. 11 (1973), 13–64. https://doi.org/10.1007/BF02388506
  19. H. Triebel, Theory of Function Spaces, Monographs in Math. 78. Birkhauser Verlag,Basel, 1983.

Cited by

  1. Fourier Multipliers on Triebel-Lizorkin-Type Spaces vol.2012, 2012, https://doi.org/10.1155/2012/431016
  2. Musielak–Orlicz Besov-type and Triebel–Lizorkin-type spaces vol.27, pp.1, 2014, https://doi.org/10.1007/s13163-013-0120-8
  3. Equivalent Quasi-Norms of Besov–Triebel–Lizorkin-Type Spaces via Derivatives vol.72, pp.1-2, 2017, https://doi.org/10.1007/s00025-017-0684-6
  4. Function spaces of Besov-type and Triebel-Lizorkin-type — a survey vol.28, pp.4, 2013, https://doi.org/10.1007/s11766-013-3205-8