References
- H.-Q. Bui, M. Paluszynski, and M. Taibleson, A maximal function characterization ofweighted Besov-Lipschitz and Triebel-Lizorkin spaces, Studia Math. 119 (1996), no. 3,219–246.
- H.-Q. Bui, M. Paluszynski, and M. Taibleson, Characterization of the Besov-Lipschitz and Triebel-Lizorkin spaces. The caseq < 1, J. Fourier Anal. Appl. 3 (1997), Special Issue, 837–846.
-
H.-Q. Bui and M. Taibleson, The characterization of the Triebel-Lizorkin spaces forp =
${\infty}$ , J. Fourier Anal. Appl. 6 (2000), no. 5, 537–550. https://doi.org/10.1007/BF02511545 - A. P. Calderon, Lebesgue spaces of differentiable functions and distributions, Proc. Sympos. Pure Math., Vol. IV pp. 33–49 American Mathematical Society, Providence, R.I.,1961.
- A. P. Calderon and A. Torchinsky, Parabolic maximal functions associated with a distribution,Advances in Math. 16 (1975), 1–64. https://doi.org/10.1016/0001-8708(75)90099-7
- Y.-K. Cho, Strichartz’s conjecture on Hardy-Sobolev spaces, Colloq. Math. 103 (2005),no. 1, 99–114. https://doi.org/10.4064/cm103-1-11
- Y.-K. Cho and J. Kim, Atomic decomposition on Hardy-Sobolev spaces, Studia Math.177 (2006), no. 1, 25–42. https://doi.org/10.4064/sm177-1-3
-
C. Fefferman and E. M. Stein,
$H^p$ spaces of several variables, Acta Math. 129 (1972),no. 3-4, 137–193. https://doi.org/10.1007/BF02392215 - M. Frazier and B. Jawerth, A discrete transform and decompositions of distributionspaces, J. Funct. Anal. 93 (1990), no. 1, 34–170. https://doi.org/10.1016/0022-1236(90)90137-A
- M. Frazier, B. Jawerth, and G. Weiss, Littlewood-Paley Theory and the Study of Function Spaces, CBMS Regional Conference Series in Mathematics, 79. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1991.
- L. Grafakos, Classical and Modern Fourier Analysis, Pearson Education, Inc., UpperSaddle River, NJ, 2004.
- B. Jawerth, Some observations on Besov and Lizorkin-Triebel spaces, Math. Scand. 40(1977), no. 1, 94–104. https://doi.org/10.7146/math.scand.a-11678
- J. Johnsen and W. Sickel, A direct proof of Sobolev embeddings for quasi-homogeneousLizorkin-Triebel spaces with mixed norms, J. Funct. Spaces Appl. 5 (2007), no. 2, 183–198. https://doi.org/10.1155/2007/714905
- J. Peetre, On spaces of Triebel-Lizorkin type, Ark. Mat. 13 (1975), 123–130. https://doi.org/10.1007/BF02386201
- E. M. Stein, Harmonic Analysis : Real-Variable Methods, Orthogonality, and OscillatoryIntegrals, Princeton Univ. Press, 1993.
- R. Strichartz, Bounded mean oscillation and Sobolev spaces, Indiana Univ. Math. J. 29(1980), no. 4, 539–558. https://doi.org/10.1512/iumj.1980.29.29041
-
R. Strichartz,
$H^p$ Sobolev spaces, Colloq. Math. 60/61 (1990), no. 1, 129–139. - H. Triebel, Spaces of distributions of Besov type on Euclidean n-space. Duality, interpolation,Ark. Mat. 11 (1973), 13–64. https://doi.org/10.1007/BF02388506
- H. Triebel, Theory of Function Spaces, Monographs in Math. 78. Birkhauser Verlag,Basel, 1983.
Cited by
- Fourier Multipliers on Triebel-Lizorkin-Type Spaces vol.2012, 2012, https://doi.org/10.1155/2012/431016
- Musielak–Orlicz Besov-type and Triebel–Lizorkin-type spaces vol.27, pp.1, 2014, https://doi.org/10.1007/s13163-013-0120-8
- Equivalent Quasi-Norms of Besov–Triebel–Lizorkin-Type Spaces via Derivatives vol.72, pp.1-2, 2017, https://doi.org/10.1007/s00025-017-0684-6
- Function spaces of Besov-type and Triebel-Lizorkin-type — a survey vol.28, pp.4, 2013, https://doi.org/10.1007/s11766-013-3205-8