Cytotoxic Sesquilignans from the Roots of Saururus chinensis

Young-Won Chin, Xing-Fu Cai, Kyung-Seop Ahn, Hyeong-Kyu Lee, and Sei-Ryang Oh ${ }^{*}$
Bio-Therapeutics Research Institute, Korea Research Institute of Bioscience and Biotechnology, Ochangeup, Cheongwongun, ChungBuk 363-883, Korea. *E-mail: seiryang@kribb.re.kr Received April 26, 2010, Accepted May 25, 2010

Key Words: Saururus chinensis, Sesquilignans, Cytotoxicity, Saururaceae

Saururus chinensis Hort. ex Loudon (Saururaceae) is a perennial herb distributed in China and Korea, and has been used as a folk medicine for the treatment of edema, gonorrhea, jaundice, pneumonia, and several inflammatory diseases in Korea. ${ }^{1}$ Previous studies of S. chinensis reported the occurrence of lignans, ${ }^{2-9}$ aristolactams, ${ }^{10}$ flavonoids, ${ }^{11}$ and furanoditerpenes, ${ }^{12}$ and a wide range of biological activities including antioxidant activity, ${ }^{5}$ hepatoprotective activity, ${ }^{6}$ cytotoxic activity, ${ }^{13-18}$ antiinflammatory activity, ${ }^{19-22}$ anti-atherogenic activity, ${ }^{21,23}$ and immunosuppressive activity. ${ }^{24}$ This paper reports the structures elucidation of the two new lignans and six known compounds, along with their cytotoxicity.

Compound $\mathbf{1}$ was obtained as a colorless powder and its molecular formula was determined to be $\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{O}_{8}$, based on the [M-H] peak at $m / z 537.2471$ (calcd 537.2488) in the HRESIMS. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopic data of compound $\mathbf{1}$ indicated the presence of a tetrahydrofuran-type lignan unit, as judged from the signals for two methines at $\delta_{\mathrm{H}} 2.34$ ($\mathrm{H}-8$ and $\mathrm{H}-8^{\prime}$), for oxymethines at $\delta_{\mathrm{H}} 5.65$ (H-7 and $\mathrm{H}-7^{\prime}$), and for methyl groups at $\delta_{\mathrm{H}} 0.78(\mathrm{H}-9)$ and $0.74\left(\mathrm{H}-9{ }^{\prime}\right)$, as well as the signals at δ_{H} 7.20 (d, $J=1.7 \mathrm{~Hz}, \mathrm{H}-2$), $7.30(J=8.2 \mathrm{~Hz}, \mathrm{H}-5), 7.36$ (br d, $J=$ $8.2 \mathrm{~Hz}, \mathrm{H}-6), 7.19$ (d, $\left.J=1.7 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 7.34(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, H-5'), and 7.09 (dd, $\left.J=8.2,1.7 \mathrm{~Hz}, \mathrm{H}^{\prime} 6^{\prime}\right)$ corresponding to two 1,3,4-trisubstitued benzene rings. ${ }^{4,25}$ An additional phenylpropanoid unit was observed in compound $\mathbf{1}$ from the proton signals for two oxymethines at $\delta_{\mathrm{H}} 4.95\left(\mathrm{H}-8^{\prime \prime}\right)$, and 5.42 (H-7"),

7",8"
1 erythro

Figure 1. Structures of compounds 1-2.

Figure 2. Key ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} \operatorname{COSY}(\boldsymbol{\sim})$ and $\mathrm{HMBC}(\mathrm{H} \longrightarrow \mathrm{C})$ and $\operatorname{NOESY}(\longleftrightarrow)$ correlations of compound $\mathbf{1}$.
for a methyl at $\delta_{\mathrm{H}} 1.60\left(\mathrm{H}-9{ }^{\prime \prime}\right)$ and for a 1,3,4-trisubstituted benzene ring at $\delta_{\mathrm{H}} 7.58\left(\mathrm{~d}, J=1.6 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}\right), 7.01(\mathrm{~d}, J=8.2$ $\left.\mathrm{Hz}, \mathrm{H}-55^{\prime \prime}\right)$, and 7.07 (dd, $J=8.2,1.6 \mathrm{~Hz}, \mathrm{H}-6$ "). ${ }^{4}$ The location of the phenylpropanoid group was confirmed by the HMBC correlation between $\mathrm{H}-8^{\prime \prime}\left(\delta_{\mathrm{H}} 4.95\right)$ and C-4' ($\delta_{\mathrm{C}} 147.5$), suggesting this phenylpropanoid is attached to $\mathrm{C}-4$ ' on the tetrahydro-furan-type lignan moiety through an ether linkage. The relative stereochemistry of the tetrahydrofuran ring in compound $\mathbf{1}$ was established by the observed NOE correlations of H-9 with H-8', $\mathrm{H}-2$, and $\mathrm{H}-6$ as well as $\mathrm{H}-9$ ' with $\mathrm{H}-8, \mathrm{H}-2^{\prime}$, and $\mathrm{H}-6$ ', indicating the 7,8 -cis- $8,8^{\prime}$-trans- $7^{\prime}, 8^{\prime}$-cis configuration. ${ }^{4,26}$ In addition, the chemical shifts of C-9" ($\delta_{\mathrm{C}} 15.3$), C-7" ($\delta_{\mathrm{C}} 75.7$), and C-8" (δ_{C} 81.1), and the coupling constant ($J=3.4 \mathrm{~Hz}$) of $\mathrm{H}-7$ " was supportive of the relative configuration of $\mathrm{C}-7{ }^{\prime \prime}$ and $\mathrm{C}-8$ " as being erythro. ${ }^{4,26}$ Futhermore, the positive Cotton effect at 231 nm enabled to assign the configuration of C-7" and $8^{\prime \prime}$ as R and S, respectively. ${ }^{27}$ Thus, the structure of compound $\mathbf{1}$ was determined as 7 " $R, 8$ " S-saucerneol, a diastereomer of (-)-saucerneol (3).

Saucerneol J (2) had a molecular formula $\left(\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{O}_{8}\right)$ and exhibited a close resemblance to compound $\mathbf{1}$ in their ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopic data except for the presence of three methoxy groups. There were differences in the chemical shifts and coupling constants of $\mathrm{H}-7$ ' in compounds 2 ($\delta_{\mathrm{H}} 4.54, J=9.3$ Hz) and $\mathbf{1}\left(\delta_{\mathrm{H}} 5.65, J=6.4 \mathrm{~Hz}\right)$, indicating the opposite configuration at $\mathrm{C}-\mathbf{7}^{\prime}$ position in compound $\mathbf{2}$ compared to compound $\mathbf{1}$.

2 erythro

Table 1. ${ }^{1} \mathrm{H}$-and ${ }^{13} \mathrm{C}$-NMR data (δ) of 1-2 $\left(\text { Pyridine- } d_{5}\right)^{a}$

position	1		2	
	δ_{H}	δ_{C}	δ_{H}	$\delta_{\text {c }}$
1	-	136.5 (s)	-	135.6 (s)
2	7.20 d, 1.7	111.6 (d)	7.25 d, 1.7	112.1 (d)
3	d	151.5 (s)	-	151.5 (s)
4		147.6 (s)	-	147.8 (s)
5	7.30 d, 8.2	117.5 (d)	7.28 d, 8.1	116.5 (d)
6	7.36 br d, 8.2	120.1 (d)	7.31 br d, 8.1	120.6 (d)
7	5.65 d, 6.4	84.6 (d)	5.30 d, 8.6	82.7 (d)
8	2.34 ddq, 12.8, 6.4, 6.4	44.5 (d)	2.24 ddq, 8.6, 7.0, 6.5	45.7 (d)
9	0.78 d, 6.4	15.3 (q)	0.73 d, 7.0	14.9 (q)
1^{\prime}	-	133.8 (s)	-	133.2 (s)
2^{\prime}	7.19 d, 1.7	112.2 (d)	$7.42 \mathrm{~d}, 1.7$	111.2 (d)
3^{\prime}	-	148.9 (s)	-	149.2 (s)
4^{\prime}	-	147.5 (s)	-	148.5 (s)
$5 '$	7.34 d, 8.2	116.6 (d)	7.30 d, 8.1	116.1 (d)
$6{ }^{\prime}$	$7.09 \mathrm{dd}, 8.2,1.7$	119.8 (d)	$7.32 \mathrm{dd}, 8.1,1.7$	120.5 (d)
71	5.65 d, 6.4	84.3 (d)	4.54 d, 9.3	87.4 (d)
8'	2.34 ddq, 12.8, 6.4, 6.4	44.5 (d)	$1.93 \mathrm{ddq}, 9.3,6.5,6.5$	47.9 (d)
$9{ }^{\prime}$	0.74 d, 6.4	15.3 (q)	1.05 d, 6.5	14.5 (q)
$1{ }^{\prime \prime}$	-	136.8 (s)	-	135.1 (s)
2 "	7.58 d, 1.6	112.2 (d)	7.59 d, 1.6	111.3 (d)
$3 "$	-	150.2 (s)	-	148.9 (s)
$4 "$	-	149.5 (s)	-	147.7 (s)
5"	7.01 d, 8.2	112.6 (d)	7.31 d, 8.1	115.8 (d)
$6 "$	$7.07 \mathrm{dd}, 8.2,1.6$	120.3 (d)	$7.29 \mathrm{dd}, 8.1,1.6$	120.7 (d)
$7{ }^{\prime \prime}$	5.42 d, 3.4	75.7 (d)	$5.42 \mathrm{~d}, 3.9$	74.8 (d)
8"	$4.95 \mathrm{dq}, 6.2,3.4$	81.1 (d)	4.90 dq, 6.2, 3.9	80.3 (d)
$9 "$	1.60 d, 6.2	15.3 (q)	$1.60 \mathrm{~d}, 6.2$	14.3 (q)
$3-\mathrm{OCH}_{3}$	3.84 s	56.5 (q)	3.82 s	56.4 (q)
$3{ }^{\prime}-\mathrm{OCH}_{3}$	3.85 s	56.5 (q)	3.86 s	56.4 (q)
$3 \mathrm{H}-\mathrm{OCH}_{3}$	3.82 s	56.3 (q)	3.80 s	56.3 (q)
$4 \mathrm{H}-\mathrm{OCH}_{3}$	3.77 s	56.4 (q)	-	-

${ }^{a}$ Assignments were based on ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, DEPT, HMQC and HMBC spectra.

The CD spectroscopic data exhibited the positive Cotton effect at 232 nm in the same manner. Therefore, the structure of compound $\mathbf{2}$ was confirmed to be 7 '-epi-7" $R, 8$ "S-4"-demethylsaucerneol.

The known compounds were in good agreement with previously reported NMR data and were consequently identified as $(-)$-saucerneol (3) with a $[\alpha]_{\mathrm{D}}$ value of $-71.1(c 0.1 \mathrm{MeOH})$ $\left[\right.$ Lit. $\left.[\alpha]_{\mathrm{D}}-91.8\right],{ }^{25}$ threo,erythro-manassantin A (4), ${ }^{16} 4-\mathrm{O}$ demehylmanassantin $\mathrm{B}(\mathbf{5})$, ${ }^{18}$ erythro, erythro-manassantin A (6), ${ }^{16}$ manassantin B (7) ${ }^{28}$ and manassantin A (8). ${ }^{17}$

All the compounds isolated were evaluated against HL-60 (human promyelocytic leukemia) cells. Compounds 1-8 exhibited cytotoxicity ($\mathrm{IC}_{50}, 0.5,7.1,3.3,5.2,3.6,2.3,8.5$ and 0.8 $\mu \mathrm{M}$, respectively) against HL-60 cell lines (camptothecin, IC_{50} $0.8 \mu \mathrm{M})$.

Experimental Section

General experimental procedures. Melting points were determined on a Kofler micro-hotstage (uncorrected). Optical rota-
tions were measured on a JASCO P-1020 polarimeter. UV spectra were measured on a Shimadzu UV-1601 UV-visible. CD spectroscopic data were obtained from JASCO-720 CD spectrometer. The NMR spectra were recorded on a Varian Unity 400 FT-NMR spectrometers with the tetramethylsilane as an internal standard. Chemical shifts are presented in ppm. HRESIMS were measured on a Waters Q-Tof Premier mass spectrometer. Column chromatography (CC) was performed on silica gel (70-230 and 230-400 mesh, Merck), reverse-phase C18 gel ($40 \mu \mathrm{~m}$, Nacalai Inc., Japan). Thin layer chromatography (TLC) was performed on Kieselgel $60 \mathrm{~F}_{254}$ (Merck) or RP-18 F 254 (Merck) plates. Spots were visualized by spraying 10% aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution on the plates and heating them for 5 min .

Plant material. The roots of Saururus chinensis was collected at Jeju (Korea) in July 2008 and dried at room temperature. A voucher specimen (00250) is deposited at the Plant Extract Bank, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.

Extraction and isolation. The dried roots of S. chinensis
(6.5 kg) was extracted with MeOH at room temperature ($3 \times$ 20 L) to obtain 0.65 kg of the solid extract. The MeOH extract was suspended in $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc $(3 \times 3 \mathrm{~L})$ to give the EtOAc-soluble fractions (85 g). The EtOAc-soluble fraction (84 g) was chromatographed on a silica gel column eluted with a stepwise gradient of hexane and EtOAc to yield 14 fractions (fr. SC1-SC14). Fr. SC12 (1.2 g) was chromatographed on a RP C-18 column ($\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 7: 3$) to yield 19 sub-fractions (fr. SC12-1-SC12-19). Fr. SC12-15 (0.14 g) was chromatographed on a RP C-18 column $\left(\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 2: 1\right)$ to give compounds $\mathbf{1}(13.2 \mathrm{mg})$ and $\mathbf{3}(98.1 \mathrm{mg})$. Fr. SC12-19 $(0.103 \mathrm{~g})$ was chromatographed on a RP C-18 column $(\mathrm{MeOH} /$ $\left.\mathrm{H}_{2} \mathrm{O}, 2: 1\right)$ to give compound $4(17.8 \mathrm{mg})$. Fr. SC14 (0.88 g) was chromatographed on a RPC-18 column ($\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 8: 2$) to yield seven sub-fractions (Fr. SC14-1-SC14-7). Fr. SC14-3 $(0.12 \mathrm{~g})$ was chromatographed on a RP C-18 column ($\mathrm{MeOH} /$ $\mathrm{H}_{2} \mathrm{O}, 3: 2$) to give compound $2(5.3 \mathrm{mg})$. Fr. SC14-6 (0.36 g) was chromatographed on a RP C-18 column ($\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 3: 2$) to give compounds $\mathbf{5}(76.7 \mathrm{mg}), \mathbf{6}(5.3 \mathrm{mg}), 7(18.3 \mathrm{mg})$, and 8 (43.3 mg).
erythro-Saucerneol (1): Colorless powder, $\mathrm{mp} 85-86^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{25}$ -18 (c 0.1, MeOH). UV $\lambda_{\text {max }}(\mathrm{MeOH}) \mathrm{nm}(\log \varepsilon): 206$ (3.74), 284 (2.94). ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR data see Tables 1. HRESIMS $m / z 537.2471$ [M-H] (Calcd for $\mathrm{C}_{31} \mathrm{H}_{37} \mathrm{O}_{8}: 537.2488$). CD (c $0.0004 \mathrm{MeOH}):[\theta]_{231}+12,075$.
Saucerneol J(2): Colorless powder, mp $75-76^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{25}-10$ ($c 0.1, \mathrm{MeOH}) . \mathrm{UV} \lambda_{\max }(\mathrm{MeOH}) \mathrm{nm}(\log \varepsilon): 206$ (3.81), 282 (2.67). ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-$ NMR data see Tables 1 and 2. HRESIMS $m / z 523.2310[\mathrm{M}-\mathrm{H}]$ (Calcd for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{O}_{8}: 523.2332$). CD (c $0.0006 \mathrm{MeOH}):[\theta]_{232}+18,121$.
Cytotoxicity evaluation. All the isolates were assessed with the HL-60 (human promyelocytic leukemia) cells according to the established protocol. ${ }^{29}$

Acknowledgments. This research was supported by a grant of KRIBB Research Initiative Program (KGS2241012).

References and Notes

1. Chung, B. S.; Shin, M. G. Dictionary of Korean Folk Medicine; Young Lim Publishing: Seoul, 1990; pp 813-814.
2. Ahn, B. T.; Lee, S.; Lee, S. B.; Lee, E. S.; Kim, J. G.; Bok, S. H.; Jeong, T. S. J. Nat. Prod. 2001, 64, 1562.
3. Hwang, B. Y.; Lee, J. H.; Jung, H. S.; Kim, K. S.; Nam, J. B.; Hong, Y. S.; Paik, S. G.; Lee, J. J. Planta Med. 2003, 69, 1096.
4. Hwang, B. Y.; Lee, J. H.; Nam, J. B.; Hong, Y. S.; Lee, J. J. Phytochemistry 2003, 64, 765.
5. Lee, W. S.; Baek, Y. I.; Kim, J. R.; Cho, K. H.; Sok, D. E.; Jeong, T. S. Bioorg. Med. Chem. Lett. 2004, 14, 5623.
6. Sung, S. H.; Kim, Y. C. J. Nat. Prod. 2000, 63, 1019.
7. Sung, S. H.; Lee, E. J.; Cho, J. H.; Kim, H. S.; Kim, Y. C. Biol. Pharm. Bull. 2000, 23, 666.
8. Seo, C. S.; Zheng, M. S.; Woo, M. H.; Lee, C. S.; Lee, S. H.; Jeong, B. S.; Chang, H. W.; Jahng, Y.; Lee, E. S.; Son, J. K. J. Nat. Prod. 2008, 71, 1771.
9. Sung, S. H. Fitoterapia 2006, 77, 487.
10. Kim, S. R.; Sung, S. H.; Kang, S. Y.; Koo, K. A.; Kim, S. H.; Ma, C. J.; Lee, H. S.; Park, M. J.; Kim, Y. C. Planta Med. 2004, 70, 391.
11. Kang, T. H.; Cho, H.; Oh, H.; Sohn, D. H.; Kim, Y. C. Fitoterapia 2005, 76, 115.
12. Hwang, B. Y.; Lee, J. H.; Nam, J. B.; Kim, H. S.; Hong, Y. S.; Lee, J. J. J. Nat. Prod. 2002, 65, 616.
13. Seo, B. R.; Lee, K. W.; Ha, J.; Park, H. J.; Choi, J. W.; Lee, K. T. Carcinogenesis 2004, 25, 1387.
14. Seo, B. R.; Yoo, C. B.; Park, H. J.; Choi, J. W.; Seo, K.; Choi, S. K.; Lee, K. T. Biol. Pharm. Bull. 2004, 27, 1594.
15. Song, S. Y.; Lee, I.; Park, C.; Lee, H.; Hahm, J. C.; Kang, W. K. Int. J. Mol. Med. 2005, 16, 517.
16. Hahm, J. C.; Lee, I. K.; Kang, W. K.; Kim, S. U.; Ahn, Y. J. Planta Med. 2005, 71, 464.
17. Hossain, C. F.; Kim, Y. P.; Baerson, S. R.; Zhang, L.; Bruick, R. K.; Mohammed, K. A.; Agarwal, A. K.; Nagle, D. G.; Zhou, Y. D. Biochem. Biophys. Res. Commun. 2005, 333, 1026.
18. Hodges, T. W.; Hossain, C. F.; Kim, Y. P.; Zhou, Y. D.; Nagle, D. G. J. Nat. Prod. 2004, 67, 767.
19. Hwang, B. Y.; Lee, J. H.; Koo, T. H.; Kim, H. S.; Hong, Y. S.; Ro, J. S.; Lee, K. S.; Lee, J. J. Planta Med. 2002, 68, 101.
20. Lee, A. K.; Sung, S. H.; Kim, Y. C.; Kim, S. G. Br. J. Pharmacol. 2003, 139, 11.
21. Rho, M. C.; Kwon, O. E.; Kim, K.; Lee, S. W.; Chung, M. Y.; Kim, Y. H.; Hayashi, M.; Lee, H. S.; Kim, Y. K. Planta Med. 2003, 69, 1147.
22. Moon, T. C.; Kim, J. C.; Song, S. E.; Suh, S. J.; Seo, C. S.; Kim, Y. K.; Jin, M.; Yang, J. H.; Son, J. K.; Jahng, Y.; Kim, C. H.; Chang, H. W. Int. Immunopharmacol. 2008, 8, 1395.
23. Lee, W. S.; Lee, D. W.; Baek, Y. I.; An, S. J.; Cho, K. H.; Choi, Y. K.; Kim, H. C.; Park, H. Y.; Bae, K. H.; Jeong, T. S. Bioorg. Med. Chem. Lett. 2004, 14, 3109.
24. Park, S. Y.; Lee, S. H.; Choi, W. H.; Koh, E. M.; Seo, J. H.; Ryu, S. Y.; Kim, Y. S.; Kwon, D. Y.; Koh, W. S. Planta Med. 2007, 73, 674.
25. Hanessian, S.; Reddy, G. J.; Chahal, N. Org. Lett. 2006, 8, 5477.
26. Tofern, B.; Jenett-Siems, K.; Siems, K.; Jakupovic, J.; Eich, E.; Phytochemistry 2000, 53, 119.
27. Huo, C.; Liang, H.; Zhao, Y.; Wang, B.; Zhang, Q. Phytochemistry 2008, 69, 788.
28. Park, H. J.; Kim, R. G.; Seo, B. R.; Ha, J.; Ahn, B. T.; Bok, S. H.; Lee, Y. S.; Kim, H. J.; Lee, K. T. Planta Med. 2003, 69, 947.
29. Park, B. Y.; Oh, S. R.; Ahn, K. S.; Kwon, O. K.; Lee, H. K. Int. Imтипорharmcol. 2008, 8, 967.
