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The discovery of bulk heterojunction solar cells has stimulat-
ed research in low band-gap π-conjugated polymers.1 The low 
band-gap polymers absorb a large part of the solar spectrum, 
and these p-type polymers (electron donors) can be used in the 
fabrication of photovolatic devices in combination with [6,6]- 
phenyl-C61-butyric acid methyl ester (PCBM) as an n-type 
material (electron acceptor). Poly(3-hexylthiophene) (P3HT), 
with an optical band-gap (Eg) of ~ 2.0 eV, has been most fre-
quently used along with PCBM in fabrication of polymer-based 
solar cells with power conversion efficiencies up to ~5%.2,3 
However, conjugated polymers with lower Egs than that of 
P3HT can lead to more enhanced absorption of sunlight, poten-
tially increasing the photocurrent. The most common strategy to 
synthesize a low band-gap polymer involves incorporation of 
electron-rich units (donors) and electron-deficient units (accep-
tors) in an alternating fashion in the polymer chain.4

We have been attempting to synthesize various p-type poly-
mers for applications in polymer-based photovoltaic devices.5-7 
Thieno[3,4-b]pyrazines have been shown to be excellent pre-
cursors for the production of low Eg π-conjugated polymers.8 
Carbazole derivatives have received much attention as optical 
materials due to their special electrical- and photo-chemical 
properties, as they have planar conjugated structures and exhibit 
good hole-transporting as well as good electron-donating pro-
perties.9 Thus, it seemed a promising approach to study polymers 
consisting of alternating carbazole and thienopyrazine deriva-
tives as electron-donating and electron-accepting units, res-
pectively.

Recently, we synthesized an alternating copolymer consist-
ing of 2,3-dimethylthieno[3,4-b]pyrazine and N-(2-ethylhexyl) 
carbazole units.10 However, the optical Eg of the polymer 
(1.87 eV) was not much lower than that of P3HT.2,3 In this study, 
with a hope that incorporation of phenyl substituents instead 
of methyl groups on the pyrazine moiety may further decrease 
the Eg due to the increased conjugation in the thieno[3,4-b] 
pyrazine unit, we synthesized an alternating copolymer con-
sisting of 2,3-bis(4-fluorophenyl)thieno[3,4-b]pyrazine and 
N-(2-ethylhexyl)carbazole units.

Experimental Section

Materials. All chemical reagents were purchased from Ald-

rich and used without further purification. 3,6-Bis(4,4,5,5-tetra-
methyl-1,3,2-dioxaborolane)-N-(2-ethylhexyl)carbazole was 
prepared with three steps from carbazole, according to a re-
ported procedure.8 3,4-Diaminothiophene dihydrochloride was 
prepared with three steps from thiophene, according to reported 
procedures.11,12

2,3-Bis(4-fluorophenyl)thieno[3,4-b]pyrazine (1): A mix-
ture of 4,4'-difluorobenzil (2.46 g, 10 mmol), 3,4-diamino-
thiophene hydrochloride (1.87 g, 10 mmol), and triethylamine 
(20 mL) in dichloromethane (70 mL) and ethanol (70 mL) was 
stirred at 50 oC for 8 h. After cooling, the reaction solution was 
extracted with dichloromethane and water (1/1). The organic 
layer was collected and dried over anhydrous magnesium sul-
fate. Further purification was performed using silica gel flash 
column chromatography (chloroform) to generate a dark yellow 
solid (2.11 g, 65%). 1H NMR (CDCl3, δ) 7.13 (m, 4H), 7.51 (m, 
4H), 8.21 (s, 2H); 13C NMR (CDCl3, δ) 115.6, 117.8, 131.6, 
135.1, 141.5, 152.1, 161.9; IR (KBr, cm‒1) 3073, 1596, 1513, 
1406, 1359, 1287, 1222, 1157, 1104, 1050, 973, 836, 813, 736, 
700, 647; Anal. Calcd: C18H10F2N2S: C, 66.65; H, 3.11: N, 8.64; 
S, 9.89. Found: C, 66.36; H, 3.06; N, 8.32; S, 10.01.

5,7-Dibromo-2,3-bis(4-fluorophenyl)thieno[3,4-b]pyrazine 
(2): Compound 2 was prepared through a modification of a 
previously reported method.12 A solution of N-bromosuccini-
mide (NBS) (3.8 g, 21 mmol) in N,N-dimethylformamide (DMF) 
(100 mL) was added dropwise to a solution of compound 1 
(3.24 g, 10 mmol) in DMF (250 mL) that was cooled by an 
ice-water bath. After addition, the ice-water bath was removed 
and the mixture was allowed to warm to room temperature and 
stirred for 6 h. The mixture was poured into water (400 mL) 
and the product was extracted with chloroform. Organic layers 
were combined, washed with saturated aqueous sodium chlo-
ride, dried over anhydrous magnesium sulfate, and concentrat-
ed by rotary evaporation. Further purification was performed 
using silica gel flash column chromatography (chloroform/ 
hexane, 2/1) to generate a green solid (3.66 g, 76%). 1H NMR 
(CDCl3, δ) 7.03 (m, 4H), 7.43 (m, 4H); IR (KBr, cm‒1) 1596, 
1513, 1411, 1365, 1269, 1234, 1157, 1104, 1074, 979, 836, 
736, 647, 606; Anal. Calcd: C18H8Br2F2N2S: C, 44.84; H, 1.67: 
N, 5.81; S, 6.65. Found: C, 45.47; H, 1.43; N, 6.32; S, 6.91.

Poly(3,6-(N-2-ethylhexyl)carbazole-alt-2,3-bis(4-fluoro-
phenyl)thieno[3,4-b]pyrazine) (PEC-FTP): 3,6-Bis(4,4,5,5- 
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Scheme 1. Synthetic route to PEC-FTP: (a) 4,4'-difluorobenzil, triethylamine, dichloromethane/ethanol (1/1); (b) NBS, DMF; (c) 3,6-bis(4,4,5,5-
tetramethyl-1,3,2-dioxaborolane)-9-(N-2-ethylhexyl)carbazole, Pd(PPh3)4, K2CO3, toluene.
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Figure 1. UV-visible absorption and PL emission spectra of PEC-FTP
in chloroform (dotted lines) and film (solid lines).

tetramethyl-1,3,2-dioxaborolane)-9-(N-2-ethylhexyl)carba-
zole (0.482 g, 1.0 mmol), compound 2 (0.531 g, 1.0 mmol), 
and Pd(PPh3)4 (69 mg, 6 mol %) were dissolved in 30 mL of 
toluene, followed by the addition of aqueous potassium carbo-
nate (2.0 M, 30 mL), and vigorously stirred at 90 oC for 72 h 
under nitrogen. For end-capping, 2-bromo-3-hexylthiophene 
(0.05 g, 0.20 mmol) was added, reacted for 6 h, followed by 
the addition of 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane)- 
4-hexylthiophene (0.12 g, 0.41 mmol). The resulting solution 
was allowed to react for 6 h, cooled, poured slowly into me-
thanol, collected by filtration, and washed by Soxhlet extraction 
with acetone, hexanes, and chloroform. The chloroform frac-
tion (550 - 600 mL) was reduced to 40 - 50 mL under reduced 
pressure, precipitated into methanol, filtered, and finally air- 
dried overnight (0.43 g, 72%). 1H NMR (CDCl3, δ) 0.6-1.8 (br, 
CH2, CH3), 2.2 (br, carbazole β-CH), 4.17(br, carbazole α-CH2), 
6.9-9.0 (br, carbazole aromatic CH); IR (KBr, cm‒1) 2959, 2924, 
2860, 1602, 1507, 1454, 1359, 1306, 1234, 1157, 1074, 979, 
836, 813, 730, 647, 606.

Measurements. NMR spectra were recorded using a JEOL 
FT-NMR (400 MHz) spectrometer. FT-IR spectra were record-
ed using a JASCO-4100 FT-IR spectrophotometer. Gel perme-
ation chromatography (GPC) was performed on a PL-GPC110 
with a RI detector using chloroform as the eluent and poly-
styrene as the standard, respectively. UV-visible absorption 
and photoluminescence (PL) emission spectra were obtained 
using a JASCO V-670 spectrofluorometer. Cyclic voltammetric 
(CV) measurements were performed on a Versa STAT 3, using 
a 0.10 M solution of tetrabutylammonium tetrafluoroborate 
(n-Bu4NBF4) in chloroform under argon at a scan rate of 50 
mV/s at room temperature. A Pt wire and Ag/Ag+ were used 
as the counter and reference electrodes, respectively.

Fabrication of photovoltaic devices. Photovoltaic devices 
were fabricated with the configuration of ITO/PEDOT:PSS/ 
PEC-FTP:PCBM/LiF/Al, possessing an active area of 12 mm2, 
as described in our previous paper.5 The active layer (thick-
ness ~ 110 nm) was prepared onto the surface of PEDOT:PSS 
(thickness ~ 40 nm), via spin-coating using blends of PEC-FTP 
and PCBM in dichlorobenzene/chloroform (1/1, v/v). Subse-
quently, the active layer was dried at 120 oC for 10 min under 
a nitrogen atmosphere. An Al layer with a thickness of 150 nm 
(LiF ~ 1 nm) was deposited via thermal evaporation under 
vacuum (10‒6 torr). The I-V characteristics of the photovoltaic 
devices were measured using an AM 1.5G solar simulator 
(Newport) at 100 mW/cm2 conditions.5

Results and Discussion

The synthesis of PEC-FTP is outlined in Scheme 1. Treat-
ment of 3,4-diaminothiophene dihydrochloride with 4,4'-di-
fluorobenzil in the presence of triethylamine afforded 2,3-bis 
(4-fluorophenyl)thieno[3,4-b]pyrazine (compound 1), which 
was then brominated with NBS to give 5,7-dibromo-2,3-bis 
(4-fluorophenyl)thieno[3,4-b]pyrazine (compound 2). Finally, 
compounds 2 and bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane)- 
9-(N-2-ethylhexyl)carbazole were copolymerized via Suzuki 
coupling, and the resulting polymer was end-capped with succe-
ssive treatments of 2-bromo-3-hexylthiophene and 2-(4,4,5,5- 
tetramethyl-1,3,2-dioxaborolane)-4-hexylthiophene to obtain 
the target polymer, PEC-FTP. The polymer was readily soluble 
in common organic solvents such as chloroform, dichloro-
methane, chlorobenzene, etc. According to GPC measurements, 
the number- and weight-average molecular weight (Mn/Mw) 
of PEC-FTP was estimated to be 9100 and 15400, respectively.

A solution of PEC-FTP in chloroform absorbed light in a 
spectral range from UV to near 740 nm, with absorption peaks 
at 339 and 564 nm, and showed a PL peak at 629 nm. However, 
the solid film of PEC-FTP exhibited absorption peaks at 336 
and 600 nm, and a PL emission peak at 689 nm (Fig. 1). Obvi-
ously, the absorption peak at 564 nm (solution) and 600 nm 
(solid film) are originated from the conjugated π-system of 
PEC-FTP. The bathochromic shifts of the UV-visible absorp-
tion and PL emission spectra of the polymer film, as compared 
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Figure 2. PL emission spectra of various weight ratios of PEC-FTP
to PCBM in film: (a) 1:0, (b) 1:1, and (c) 1:3.
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Figure 3. Cyclic voltammogram curve of PEC-FTP in chloroform 
(0.40 mg/mL) containing 0.10 M Bu4NBF4.

Table 1. Summary of the optical and electrochemical data of PEC-FTP

λab, onset
(film) (nm)

λPL, max
(film) (nm)

Eox, onset
 (V)

Eg
a 

(eV)
HOMO

(eV)
LUMO

(eV)

PEC-FTP 736 689 0.77 1.68 ‒5.48 ‒3.80
aEg (eV) = 1240/λab,onset 

to those of its solution sample, are due to closer intermolecular 
interactions in solid state.13

PL spectra for blends of PEC-FTP/PCBM in film revealed 
that, with increasing PCBM content, the PL intensity of PEC- 
FTP progressively decreased accordingly, due to more efficient 
quenching of the polymer’s PL emissions by PCBM (Fig. 2). 
This observation clearly indicates that the electron transfer effi-
ciency from the photo-excited PEC-FTP to PCBM increases 
as the PCBM content increases, due to the shortened distances 
between the polymer and PCBM molecules in the solid films.

The electrochemical property of PEC-FTP was examined 
by CV experiments in a three-electrode cell, set up with 0.10 M 
n-Bu4NBF4 supporting electrolyte in chloroform (Fig. 3). In 
the anodic scan, the onset of oxidation potential (Eox, onset) of 
PEC-FTP occurred at 0.77 V. The highest occupied mole-
cular orbital (HOMO) energy level of PEC-FTP was estimated 
to be –5.48 eV, according to the empirical formula HOMO = 
– (Eox, onset + 4.71) (eV).14 The optical Eg of PEC-FTP was 
estimated to be 1.68 eV, based on the lower energy absorption 
band edge (736 nm) of the UV-visible absorption spectrum in 
film.6 If this polymer is employed as a p-type polymer along 
with PCBM as the n-type material in the fabrication of photo-

voltaic cells, the lower HOMO energy level of PEC-FTP as com-
pared to that of P3HT (HOMO ~ –5.1 ~ –5.2 eV) would be 
advantageous with respect to the open-circuit voltage (Voc), 
since the Voc is closely related to the difference in energy level 
between the HOMO of a p-type polymer and the lowest un-
occupied molecular orbital (LUMO) of PCBM.15 From the corre-
lation between the HOMO energy level and the optical Eg, the 
LUMO energy level of PEC-FTP was calculated to be –3.80 eV. 
It was reported that the difference in the LUMO energy levels 
of the p-type and n-type materials should be slightly larger 
than the exciton binding energy for efficient electron transfer.16 
The difference in the LUMO energy levels of PEC-FTP and 
PCBM was calculated to be ~ 0.5 eV, suggesting that the poly-
mer can be used as a p-type material in fabrication of polymer- 
based photovoltaic devices. The lower energy-band edge of the 
UV-visible absorption (λab, onset), Eox, onset, Eg, and HOMO/ 
LUMO energy of PEC-FTP are listed in Table 1.

Bulk heterojunction photovoltaic devices were fabricated 
using various ratios of PEC-FTP:PCBM (1:1, 1:2, and 1:3) in 
dichlorobenzene/chloroform (1:1, v/v). The open circuit voltage 
(Voc), short circuit current density (Jsc), fill factor (FF), and 
power conversion efficiency (PCE) of the device prepared using 
a solution of PEC-FTP:PCBM (1:2) were estimated to be 0.39 V, 
0.16 mA/cm2, 0.26, and 0.016%, respectively. The conversion 
efficiencies of the photovoltaic devices, fabricated using 1:1 
and 1:2 ratios of PEC-FTP/PCBM under the identical experi-
mental conditions were 0.006% and 0.014%, respectively. The 
even lower PCE of the 1:1 PEC-FTP:PCBM device, compared 
to those of the 1:2 and 1:3 PEC-FTP:PCBM devices, can be 
ascribed to inefficient dissociation of excitons at the interface 
between the polymer and PCBM, based on Figure 2 where the 
PL emission of PEC-FTP was not completely quenched by 
PCBM when the ratio of PEC-FTP to PCBM was 1:1. Even 
though more device optimizations may enhance the perfor-
mance of the devices to some extent, a main reason for the 
currently low conversion efficiency seems to be the low absorp-
tion coefficient of the polymer since the absorbance of PEC-FTP 
at 564 nm was about one tenth of P3HT’s absorbance at 448 nm 
in chloroform at the same concentration.

Conclusions

PEC-FTP was successfully synthesized via a multi-step pro-
cedure. The optical band gap of the polymer was estimated to 
be 1.68 eV, which is much lower than that of P3HT. The LUMO 
and HOMO energy levels of PEC-FTP were estimated to be 
‒3.80 eV and ‒5.48 eV, respectively. However, the PCE of the 
photovoltaic devices fabricated using the polymer:PCBM (1:2) 
was only 0.016% under conditions of 100 mW/cm2 and AM 
1.5G illumination. The low efficiency of the present devices was 
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attributed the very low absorption coefficient of the polymer, 
as compared to P3HT.
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