DOI QR코드

DOI QR Code

A Comparison Method of Silver Nanoparticles Prepared by the Gamma Irradiation and in situ Reduction Methods

  • Lee, Chul-Jae (Division of Chemical Industry, Yeungnam College of Science & Technology) ;
  • Karim, Mohammad Rezaul (Center of Excellence for Research in Engineering Materials, College of Engineering, King Saud University) ;
  • Vasudevan, T. (Department of Chemistry Education, Kyungpook National University) ;
  • Kim, Hee-Jin (Department of Chemistry Education, Kyungpook National University) ;
  • Raushan, K. (Department of Chemistry Education, Kyungpook National University) ;
  • Jung, Maeng-Joon (School of Nano & Materials Science Engineering, Kyungpook National University) ;
  • Kim, Dong-Yeub (Division of Chemical Industry, Yeungnam College of Science & Technology) ;
  • Lee, Mu-Sang (Department of Chemistry Education, Kyungpook National University)
  • Received : 2010.03.25
  • Accepted : 2010.05.25
  • Published : 2010.07.20

Abstract

Silver nanoparticles has been prepared by the $\gamma$-irradiation and in situ reduction methods. Based on the Raman spectra, TEM images, X-ray Diffraction (XRD) patterns and UV-vis spectra, the in situ reduction method is more stable and the average size of the silver nanoparticles is also smaller than by the $\gamma$-irradiation reduction method. It is identified that the silver ions interacting with nonbonding electrons of oxygen atom in the carbonyl group of polyvinylpyrrolidone (PVP) by the in situ reduction method. It is also found advantages of the in situ reduction method including no additional reducing agents, without $\gamma$-irradiations treatment and the room temperature treatment suitability.

Keywords

References

  1. Templeton, A. C.; Wuelfing, W. P.; Murray, R. W. Acc. Chem. Res. 2000, 33, 27. https://doi.org/10.1021/ar9602664
  2. El-sayed, M. A. Acc. Chem. Res. 2001, 34, 257. https://doi.org/10.1021/ar960016n
  3. Karim, M. R.; Lim, K. T.; Lee, C. J.; Bhuiyan, M. T. I.; Kim, H. J.;Park, L. S.; Lee, M. S. J. Polym. Sci. Polym. Chem. 2007, 45, 5741. https://doi.org/10.1002/pola.22323
  4. Kamat, P. V. J. Phys. Chem. B 2002, 106, 7729. https://doi.org/10.1021/jp0209289
  5. Jin, J. H.; Hong, S. U.; Won, J. G.; Kang, Y. S. Macromolecules2000, 33, 4932. https://doi.org/10.1021/ma000082b
  6. Albercht, M. G.; Creighton, J. A. J. Am. Chem. Soc. 1977, 99, 5215. https://doi.org/10.1021/ja00457a071
  7. Fievet, F.; Lagier, J. P.; Figlarz, M. Mater. Res. Soc. Bull. 1989, 14,29. https://doi.org/10.1557/S0883769400060930
  8. Gao, Y.; Jiang, P.; Liu, D. F.; Yuan, H. J.; Yan, X. Q.; Zhou, Z. P.;Wang, J. X.; Song, L.; Liu, L. F.; Zhou, W. Y.; Wang, G.; Wang, C.Y.; Xie, S. S. Chem. Phys. Lett. 2003, 380, 146. https://doi.org/10.1016/j.cplett.2003.08.074
  9. Lee, C. J.; Karim, M. R.; Lee, M. S. Mater. Lett. 2007, 61, 2675. https://doi.org/10.1016/j.matlet.2006.10.021
  10. Dey, G. R.; Kishore, K. Radiat. Phys. Chem. 2005, 72, 565. https://doi.org/10.1016/j.radphyschem.2004.04.027
  11. Shin, H. S.; Yang, H. J.; Kim, S. B.; Lee, M. S. J. Colloid Interface Sci. 2004, 274, 89. https://doi.org/10.1016/j.jcis.2004.02.084
  12. Shin, H. S.; Choi, H. C.; Jung, Y.; Kim, S. B.; Shin, H. J. Chem. Phys. Lett. 2004, 383, 418. https://doi.org/10.1016/j.cplett.2003.11.054
  13. Ghosh, K.; Maiti, S. N. J. Appli. Polym. Sci. 1996, 60, 323. https://doi.org/10.1002/(SICI)1097-4628(19960418)60:3<323::AID-APP5>3.0.CO;2-N
  14. Jin, R. Science 2001, 294, 1901. https://doi.org/10.1126/science.1066541
  15. Wang, H.; Qiao, X.; Chen, J.; Ding, S. Colloids Surf. 2005, 256,111. https://doi.org/10.1016/j.colsurfa.2004.12.058
  16. Liu, M.; Yan, X.; Liu, H.; Yu, W. React. Funct. Polym. 2000, 44,55. https://doi.org/10.1016/S1381-5148(99)00077-2
  17. Zhu, Y.; Qian, Y.; Zhang, M.; Chem, Z.; Lu, B.; Wang, C. Mater. Lett. 1993, 17, 314. https://doi.org/10.1016/0167-577X(93)90021-O
  18. Suber, L.; Sondi, I.; Matijević, E.; Goia, D. V. J. Colloid Interface Sci. 2005, 288, 489. https://doi.org/10.1016/j.jcis.2005.03.017
  19. Kerker, M. J. Colloid and Interface Sci. 2005, 105, 297. https://doi.org/10.1016/0021-9797(85)90304-2
  20. Silvert, P. Y.; Urbina, R. H.; Elhsissen, K. T. J. Mater. Chem. 1997,7, 2, 293. https://doi.org/10.1039/a605347e
  21. Fukushima, T.; Kosaka, A.; Ishimura, Y. Science 2003, 300, 2072. https://doi.org/10.1126/science.1082289
  22. Schweinsberg, D. P.; Hope, G. A.; Trueman, A.; Alego, V. O.Corros. Sci. 1996, 38, 587. https://doi.org/10.1016/0010-938X(95)00148-D
  23. Zhang, Z.; Zhao, B.; Hu, L. J. Solid State Chem. 1996, 121, 105. https://doi.org/10.1006/jssc.1996.0015
  24. de Faria, D. L. A.; Gil, H. A. C.; de Queiróz, A. A. A. J. Mol. Struct.1999, 479, 93. https://doi.org/10.1016/S0022-2860(98)00810-2
  25. Liu, M.; Yan, X.; Liu, H.; Yu, W. React. Funct. Polym. 2000, 44,55. https://doi.org/10.1016/S1381-5148(99)00077-2
  26. Gao, Y.; Jiang, P.; Liu, D. F.; Yuan, H. J.; Zhou, Z. P.; Wang, J. X.;Song, L.; Liu, L. F.; Zhou, W. Y.; Wang, G.; Wang, C. Y.; Xie, S.S. J. Phys. Chem. B 2004, 108, 12877. https://doi.org/10.1021/jp037116c
  27. Moskovits, M. J. Phys. Chem. 1982, 77, 6327.
  28. Moskovits, M.; Suh, J. S. J. Phys. Chem. 1988, 92, 6327. https://doi.org/10.1021/j100333a030

Cited by

  1. Biosynthesis of Silver Nanoparticles Using Brown Marine Macroalga, Sargassum Muticum Aqueous Extract vol.6, pp.12, 2013, https://doi.org/10.3390/ma6125942
  2. Synthesis and characterization of silver colloidal nanoparticles with different coatings for SERS application vol.16, pp.12, 2014, https://doi.org/10.1007/s11051-014-2748-9
  3. PPI–SA and PAMAM–SA dendrimers assisted synthesis of silver nanoparticles: structure, optical properties and stability vol.16, pp.4, 2014, https://doi.org/10.1007/s11051-014-2343-0
  4. Cylindrical dielectric barrier discharge plasma catalytic effect on chemical methods of silver nano-particle production vol.23, pp.11, 2016, https://doi.org/10.1063/1.4967270
  5. using fluorescence lifetime imaging microscopy, Raman microscopy, and surface-enhanced Raman scattering microscopy vol.20, pp.5, 2014, https://doi.org/10.1117/1.JBO.20.5.051006
  6. Mechanism and modeling of poly[vinylpyrrolidone] (PVP) facilitated synthesis of silver nanoplates vol.20, pp.22, 2018, https://doi.org/10.1039/C8CP01610K
  7. Layer by layer assembly of nanosilver for high performance cotton fabrics vol.17, pp.3, 2016, https://doi.org/10.1007/s12221-016-5814-3
  8. FUNGUS-MEDIATED SYNTHESIS OF SILVER NANOPARTICLES (AgNP) AND INHIBITORY EFFECT ON Aspergillus spp. IN COMBINATION WITH ANTIFUNGAL AGENT vol.41, pp.1, 2010, https://doi.org/10.17776/csj.653627
  9. Gamma Irradiation-Assisted Synthesis of Silver Nanoparticle-Embedded Graphene Oxide-TiO2 Nanotube Nanocomposite for Organic Dye Photodegradation vol.2021, pp.None, 2010, https://doi.org/10.1155/2021/6679637