DOI QR코드

DOI QR Code

Amperometric Morphine Detection Using Pt-Co Alloy Nanowire Array-modified Electrode

  • Tao, Manlan (College of Chemistry and Chemical Engineering, Yunnan Normal Universityiversity) ;
  • Xu, Feng (College of Chemistry and Chemical Engineering, Yunnan Normal University) ;
  • Li, Yueting (College of Chemistry and Chemical Engineering, Yunnan Normal University) ;
  • Xu, Quanqing (College of Chemistry and Chemical Engineering, Yunnan Normal University) ;
  • Chang, Yanbing (College of Chemistry and Chemical Engineering, Yunnan Normal University) ;
  • Wu, Zaisheng (State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University) ;
  • Yang, Yun-Hui (College of Chemistry and Chemical Engineering, Yunnan Normal University)
  • Received : 2009.11.25
  • Accepted : 2010.05.19
  • Published : 2010.07.20

Abstract

Pt-Co alloy nanowire array was directly synthesized by electrochemical deposition with polycarbonate template at -1.0V and subsequent chemical etching of the template. The use of Pt-Co alloy nanowire array-modified electrode (Pt-Co NAE) for the determination of morphine (MO) is described. The morphology of the Pt-Co alloy nanowire array has been investigated by scanning electron microscopy (SEM) and energy disperse X-ray spectroscopy (EDS) analysis), respectively. The resulting Pt-Co NAE offered a linear amperometric response for morphine ranging from $2.35\times10^{-5}$ to $2.39\times10^{-3}$ M with a detection limit of $7.83\times10^{-6}$ M at optimum conditions. This sensor displayed high sensitivity and long-term stability.

Keywords

References

  1. Milne, R. W.; Nation, R. L.; Somogyi, A. A.; Crugten J. T. B: Biomed. Appl. 1991, 565, 457. https://doi.org/10.1016/0378-4347(91)80410-E
  2. Yeh, S. Y.; Gorodetzky, C. W. J. Pharm Sci. 1977, 66, 1288. https://doi.org/10.1002/jps.2600660921
  3. Potscha, L.; Skoppb, G. Forensic Sci. Int. 1996, 81, 95. https://doi.org/10.1016/S0379-0738(96)01974-3
  4. Hara, S.; Mochinaga, S.; Fukuzawa, M.; Ono, N.; Kuroda, T. Anal. Chim. Acta 1999, 387, 121. https://doi.org/10.1016/S0003-2670(99)00108-7
  5. Sooyeun, L.; Rosa, C.; Sue, P. Forensic Sci. Int. 2009, 183, 74. https://doi.org/10.1016/j.forsciint.2008.10.015
  6. Schanzle, G.; Li, S.; Mikus, G.; Hofmann, U. B: Biomed. Appl.1999, 721, 55. https://doi.org/10.1016/S0378-4347(98)00438-1
  7. Xu, F.; Gao, M.; Wang, L.; Zhou T.; Jin, L.; Jin, J. Talanta 2002,58, 427. https://doi.org/10.1016/S0039-9140(02)00312-0
  8. Ho, K. C.; Chen, C. Y.; Hsu, H. C.; Chen, L. C.; Shiesh, S. C.; Lin,X. Z. Biosens. Bioelectron. 2004, 20, 3. https://doi.org/10.1016/j.bios.2003.11.027
  9. Yeh, W. M.; Ho, K. C. Anal. Chim. Acta 2005, 542, 76. https://doi.org/10.1016/j.aca.2005.01.071
  10. Pournaghi-Azar, M. H.; Saadatirad, A. J. Electroanal. Chem. 2008,622, 293.
  11. Yang, G. M.; Tan, L.; Shi, Y.; Wang, S. P.; Lu, X. X.; Bai, H. P.;Yang, Y. H. Bull. Korean Chem. Soc. 2009, 30, 454. https://doi.org/10.5012/bkcs.2009.30.2.454
  12. Xue, F. H.; Fei, G. T.; Wu, B.; Cui, P.; Zhang, L. D. J. Am. Chem. Soc. 2005, 127, 15348. https://doi.org/10.1021/ja0547073
  13. Wen, D.; Liu, Y.; Yang, G. C.; Dong, S. J. Electrochimica Acta2007, 52, 5312. https://doi.org/10.1016/j.electacta.2007.02.006
  14. Ma, H. X.; Yang, G. B.; Yu, L. G.; Zhang, P. Y. Surf. Coat. Technol.2008, 202, 5799. https://doi.org/10.1016/j.surfcoat.2008.05.052
  15. Luo, J.; Njoki, N.; Lin, Y.; Wang, L.; Zhong, C. Langmuir 2006,22, 2892. https://doi.org/10.1021/la0529557
  16. Bai, Y.; Sun, Y. Y.; Sun, C. Q. Biosens. Bioelectron. 2008, 24, 579. https://doi.org/10.1016/j.bios.2008.06.003
  17. Cavallotti, P. L.; Bestetti, M.; Franz, S. Electrochim. Acta 2003, 48,3013. https://doi.org/10.1016/S0013-4686(03)00367-0
  18. Puganova, E. A.; Karyakin, A. A. Sens. Actuators, B: Chemical.2005, 109, 167. https://doi.org/10.1016/j.snb.2005.03.094

Cited by

  1. Application of multivariate optimization method in nanomolar simultaneous determination of morphine and codeine in the presence of uric acid using a glassy carbon electrode modified with a hydroxyapatite-Fe3O4 nanoparticle/multiwalled carbon nanotubes composite vol.14, pp.11, 2017, https://doi.org/10.1007/s13738-017-1167-0
  2. Fabrication and characterization of poly(vinylferrocenium) perchlorate/poly(3,4-ethylenedioxythiophene) composite-coated electrode in methylene chloride vol.162, pp.11, 2010, https://doi.org/10.1016/j.synthmet.2012.04.017
  3. Review-Review on the Progress in Electrochemical Detection of Morphine Based on Different Modified Electrodes vol.167, pp.3, 2010, https://doi.org/10.1149/1945-7111/ab6cf6
  4. Determination of morphine and its metabolites in the biological samples: an updated review vol.12, pp.16, 2010, https://doi.org/10.4155/bio-2020-0070
  5. Emerging trends in point-of-care sensors for illicit drugs analysis vol.238, pp.p2, 2010, https://doi.org/10.1016/j.talanta.2021.123048