DOI QR코드

DOI QR Code

Correlation of the Rates of Solvolysis of 4-Morpholinecarbonyl Chloride Using the Extended Grunwald-Winstein Equation

  • Kim, Ran (Department of Chemistry Education and Research Instituted of Natural Science, Gyeongsang National University) ;
  • Ali, Dildar (Institute of Biochemistry, University of Balochistan) ;
  • Lee, Jong-Pal (Department of Chemistry, Dong-A University) ;
  • Yang, Ki-Yull (Department of Chemistry Education and Research Instituted of Natural Science, Gyeongsang National University) ;
  • Koo, In-Sun (Department of Chemistry Education and Research Instituted of Natural Science, Gyeongsang National University)
  • Received : 2010.04.21
  • Accepted : 2010.05.19
  • Published : 2010.07.20

Abstract

The rates of solvolysis of 4-morpholinecarbonyl chloride (MPC) have measured at $35.0^{\circ}C$ in water, $D_2O$, $CH_3OD$, and in aqueous binary mixtures of acetone, ethanol, methanol, and 2,2,2-trifluoroethanol. An extended (two-term) Grunwald-Winstein equation correlation gave sensitivities towards changes in solvent nucleophilicity and solvent ionizing power as expected for a dissociative $S_N2$ and/or $S_N1$(ionization) pathway. For nine solvents specific rates were determined at two additional temperatures and higher enthalpies and smaller negative entropies of activation were observed, consistent with the typical dissociative $S_N2$ or $S_N1$(ionization) pathway. The solvent deuterium isotope effect values for the hydrolysis of MPC of $k_{H_2O}/k_{D_2O}$ = 1.27 and for the methanolysis of MPC of $k_{MeOH}/k_{MeOD}$ = 1.22 are typical magnitudes of the $S_N1$ or ionization mechanism.

Keywords

References

  1. Grunwald, E.; Winstein, S. J. Am. Chem. Soc. 1948, 70, 846. https://doi.org/10.1021/ja01182a117
  2. Winstein, S.; Grunwald, E.; Jones, H. W. J. Am. Chem. Soc. 1951, 73, 2700. https://doi.org/10.1021/ja01150a078
  3. Bentley, T. W.; Llewellyn, G. Prog. Phys. Org. Chem. 1990, 17, 121. https://doi.org/10.1002/9780470171967.ch5
  4. Kevill, D. N.; D’Souza, M. J. J. Chem. Res. Synop. 1993, 174.
  5. Lomas, J. S.; D’Souza, M. J.; Kevill, D. N. J. Am. Chem. Soc. 1995, 117, 5891. https://doi.org/10.1021/ja00126a045
  6. Bentley, T. W.; Carter, G. E.; Harris, H. C. J. Chem. Soc., Chem. Commun. 1984, 388.
  7. Bentley, T. W.; Carter, G. E.; Harris, H. C. J. Chem. Soc., Perkin Trans. 2 1985, 983.
  8. Bentley, T. W.; Harris, H. C. J. Chem. Soc., Perkin Trans. 2 1986, 619.
  9. Bentley, T. W.; Harris, H. C.; Koo, I. S. J. Chem. Soc., Perkin Trans. 2 1988, 783.
  10. Swain, C. G.; Mosely, R. B.; Bown, D. E. J. Am. Chem. Soc. 1955, 77, 3731. https://doi.org/10.1021/ja01619a018
  11. Koo, I. S.; Bentley, T. W.; Kang, D. H.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1991, 173.
  12. Koo, I. S.; Bentley, T. W.; Llewellyn, G.; Yang, K. J. Chem. Soc., Perkin Trans. 2 1991, 1175.
  13. Koo, I. S.; Kwon, E.; Choi, H.; Yang, K.; Park, J. K.; Lee, J. P.; Lee, I.; Bentley, T. W. Bull. Korean Chem. Soc. 2007, 28, 2377. https://doi.org/10.5012/bkcs.2007.28.12.2377
  14. Winstein, S.; Fainberg, A. H.; Grunwald, E. J. Am. Chem. Soc. 1957, 79, 4146. https://doi.org/10.1021/ja01572a046
  15. Fainberg, A. H.; Winstein, S. J. Am. Chem. Soc. 1957, 79, 1957.
  16. Koo, I. S.; Yang, K.; Kang, K.; Lee, I. Bull. Korean Chem. Soc. 1998, 19, 968.
  17. Koo, I. S.; Lee, J. S.; Yang, K.; Kang, K.; Lee, I. Bull. Korean Chem. Soc. 1999, 20, 573.
  18. Kevill, D. N.; Ismail, NHJ.; D’Souza, M. J. J. Org. Chem. Soc. 1994, 59, 6303. https://doi.org/10.1021/jo00100a036
  19. Kevill, D. N.; D’Souza, M. J. J. Chem. Soc., Perkin Trans. 2 1995, 973.
  20. Kevill, D. N.; D’Souza, M. J. J. Chem. Soc., Perkin Trans. 2 1997, 257.
  21. Kevill, D. N.; Bond, M. W.; D’Souza, M. J. J. Org. Chem. 1997, 62, 7869. https://doi.org/10.1021/jo970657b
  22. Kevill, D. N. Development and Uses of Scales of Solvent Nucleophilicity. In Advances in Quantitative Structure-Property Relationships; Charton, M., Ed.; JAI Press: Greenwich, CT, 1996; Vol. 1, 81-115.
  23. Kevill, D. N.; Anderson, S. W. J. Org. Chem. 1991, 56, 1845. https://doi.org/10.1021/jo00005a034
  24. Kevill, D. N.; D’Souza, M. J. J. Chem. Soc., Perkin Trans. 2 2002, 240.
  25. Kyong, J. B.; Rhu, C. J.; Kim, Y. G.; Kevill, D. N. J. Phys. Org. Chem. 2007, 20, 525. https://doi.org/10.1002/poc.1194
  26. Kevill, D. N.; D’Souza, M. J. J. Phys. Org. Chem. 2002, 15, 881. https://doi.org/10.1002/poc.569
  27. Lee, I.; Koo, I. S.; Sohn, S. C.; Lee, H. H. Bull. Korean Chem. Soc. 1982, 3, 92.
  28. Lee, I.; Sung, D. D.; Uhm, T. S.; Ryu, Z. H. J. Chem. Soc., Perkin Trans. 2 1989, 1697.
  29. Bentley, T. W.; Harris, H. C.; Koo, I. S. J. Chem. Soc., Perkin Trans. 2 1988, 783.
  30. Bentley, T. W.; Harris, H. C. J. Org. Chem. 1988, 53, 724. https://doi.org/10.1021/jo00239a004
  31. Bentley, T. W.; Koo, I. S. J. Chem. Soc., Perkin Trans. 2 1989, 1385.
  32. Bentley, T. W.; Koo, I. S.; Norman, S. J. J. Org. Chem. 1991, 56, 1604. https://doi.org/10.1021/jo00004a048
  33. Koo, I. S.; Lee, J. S.; Yang, K.; Kang, K.; Lee, I. Bull. Korean Chem. Soc. 1999, 20, 573.
  34. Koo, I. S.; Yang, K.; Koo, J. C.; Park, J. K.; Lee, I. Bull. Korean Chem. Soc. 1997, 18, 1017.
  35. Koo, I. S.; Yang, K.; Kang, K.; Lee, I. Bull. Korean Chem. Soc. 1998, 19, 968.
  36. Kevill, D. N.; Kim, J. C.; Kyong, J. B. J. Chem. Research 1999, 150.
  37. An, S. K.; Yang, T. S.; Cho, J. M.; Yang, K.; Lee, J. P.; Bentley, T. W.; Lee, I.; Koo, I. S. Bull. Korean Chem. Soc. 2002, 23, 1445. https://doi.org/10.5012/bkcs.2002.23.10.1445
  38. Kevill, D. N.; D’Souza, M. J. J. Org. Chem. 1998, 63, 2120. https://doi.org/10.1021/jo9714270
  39. Koo, I. S.; Bentley, T. W.; Lee, I. J. Korean Chem. Soc. 1990, 34, 304.
  40. Oh, J.; Yang, K.; Koo, I. S.; Lee, I. J. Chem. Res. 1993, 310.
  41. Bentley, T. W.; Llewellyn, G.; Ryu, Z. H. J. Org. Chem. 1998, 63, 4654. https://doi.org/10.1021/jo980109d
  42. McLennan, D. J.; Martin, P. L. J. Chem. Soc., Perkin Trans. 2 1982, 1099.
  43. Liu, K.-T.; Duann, Y. F.; Hou, S. H. J. Chem. Soc., Perkin Trans. 2 1998, 2181.
  44. Liu, K.-T.; Chen, H.-I. J. Chem. Soc., Perkin Trans. 2 2000, 893.
  45. Ryu, Z. H.; Shin, S. H.; Lim, G. T.; Lee, J. P. Bull. Korean Chem. Soc. 2004, 25, 307. https://doi.org/10.5012/bkcs.2004.25.2.307
  46. Koo, I. S.; An, S. K.; Yang, K.; Koh, H. J.; Choi, M. H.; Lee, I. Bull. Korean Chem. Soc. 2001, 22, 842.
  47. Ryu, Z. H.; Bentley, T. W. Bull. Korean Chem. Soc. 2008, 29, 2145. https://doi.org/10.5012/bkcs.2008.29.11.2145
  48. Kevill, D. N.; Ryu, Z. H.; Niedermeyer, M. A.; Koyoshi, F.; D’Souza, M. J. J. Phys. Org. Chem. 2007, 20, 431. https://doi.org/10.1002/poc.1168
  49. Ryu, Z. H.; Lee, S. W.; D’Souza, M. J.; Yaakoubd, L.; Feld, S. E.; Kevill, D. N. Int. J. Mol. Sci. 2008, 9, 2639. https://doi.org/10.3390/ijms9122639
  50. Kyong, J. B.; Yoo, J. S.; Kevill, D. N. J. Org. Chem. 2003, 68, 3425. https://doi.org/10.1021/jo0207426
  51. Kevill, D. N.; D’Souza, M. J. J. Chem. Soc., Perkin Trans. 2 1997, 1721.
  52. Kyong, J. B.; Won, H.; Kevill, D. N. Int. J. Mol. Sci. 2005, 6, 87. https://doi.org/10.3390/i6010087
  53. Kyong, J. B.; Kim, Y. G.; Kim, D. K.; Kevill, D. N. Bull. Korean Chem. Soc. 2000, 21, 662.
  54. Kyong, J. B.; Park, B. C.; Kim, C. B.; Kevill, D. N. J. Org. Chem. 2000, 65, 8051. https://doi.org/10.1021/jo005630y
  55. Johnson, S. Adv. Phys. Org. Chem. 1967, 5, 237. https://doi.org/10.1016/S0065-3160(08)60312-3
  56. Bacaloglu, R.; Daescu, C.; Ostrogovich, G. J. Chem. Soc., Perkin Trans. 2 1972, 1011.
  57. D’Souza, M. J.; Kevill, D. N.; Bentley, T. W.; Devaney, A. C. J. Org. Chem. 1995, 60, 1632. https://doi.org/10.1021/jo00111a022
  58. Kevill, D. N.; Bond, M. W.; D’Souza, M. J. J. Phys. Org. Chem. 1998, 11, 273. https://doi.org/10.1002/(SICI)1099-1395(199804)11:4<273::AID-POC1>3.0.CO;2-A
  59. Kevill, D. N.; Rudolph, T. M.; D’Souza, M. J. J. Phys. Org. Chem. 2000, 13, 192. https://doi.org/10.1002/(SICI)1099-1395(200004)13:4<192::AID-POC228>3.0.CO;2-K
  60. Kosower, E. M. J. Am. Chem. Soc. 1958, 80, 3253. https://doi.org/10.1021/ja01546a020
  61. Kosower, E. M. J. Am. Chem. Soc. 1958, 80, 3267. https://doi.org/10.1021/ja01546a022
  62. Frost, A.; Pearson, R. G. Kinetic and Mechanism, 2nd ed.; Wiley:New York, 1961; Chap 7.
  63. Queen, A. Can. J. Chem. 1967, 45, 1619. https://doi.org/10.1139/v67-264
  64. Yew, K. H.; Koh, H. J.; Lee, H. W. J. Chem. Soc., Perkin Trans. 2 1995, 2263.
  65. Koo, I. S.; Yang, K.; Kang, K.; Oh, H. J.; Lee, I. Bull. Korean Chem. Soc. 1996, 17, 520.
  66. Kevill, D. N.; D’Souza, M. J. J. Org. Chem. 1998, 63, 2120. https://doi.org/10.1021/jo9714270

Cited by

  1. Aminolysis of Y- Substituted Phenyl Benzenesulfonates in MeCN: Effect of Medium on Reactivity and Reaction Mechanism vol.32, pp.spc8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.2955
  2. Use of Linear Free Energy Relationships (LFERs) to Elucidate the Mechanisms of Reaction of a γ-Methyl-β-alkynyl and an ortho-Substituted Aryl Chloroformate Ester vol.13, pp.12, 2012, https://doi.org/10.3390/ijms13010665
  3. Mechanistic Studies of the Solvolyses of Carbamoyl Chlorides and Related Reactions vol.17, pp.1, 2016, https://doi.org/10.3390/ijms17010111
  4. 2 spectrum of reaction mechanisms vol.30, pp.1, 2016, https://doi.org/10.1002/poc.3585
  5. Correlation of the Rates of Solvolysis of 1-Piperidincarbonyl Chloride Using the Extended Grunwald-Winstein Equation vol.32, pp.11, 2010, https://doi.org/10.5012/bkcs.2011.32.11.3941