DOI QR코드

DOI QR Code

Color Pure and Stable Blue Light Emitting Material Containing Anthracene and Fluorene for OLED

  • Park, Hyun-Tae (Department of Chemistry and RINS, Gyeongsang National University) ;
  • Oh, Dae-Hwan (Department of Chemistry and RINS, Gyeongsang National University) ;
  • Park, Jong-Won (School of Materials Science and Engineering and Engineering Research Institute (ERI), Gyeongsang National University) ;
  • Kim, Jin-Hak (School of Materials Science and Engineering and Engineering Research Institute (ERI), Gyeongsang National University) ;
  • Shin, Sung-Chul (Department of Chemistry and RINS, Gyeongsang National University) ;
  • Kim, Yun-Hi (Department of Chemistry and RINS, Gyeongsang National University) ;
  • Kwon, Soon-Ki (School of Materials Science and Engineering and Engineering Research Institute (ERI), Gyeongsang National University)
  • Received : 2010.03.31
  • Accepted : 2010.05.17
  • Published : 2010.07.20

Abstract

A new blue light emitting anthracene derivative, 9,10-bis-(9',9'-diethyl-7'-t-butyl-fluoren-2'-yl)anthracene (BETF), has been designed and synthesized by a palladium catalyzed Suzuki cross-coupling. A theoretical calculation of the three-dimensional structure of BETF supports that it has a non coplanar structure and inhibited intermolecular interactions resulting in high luminescent efficiency and high color purity. BETF has good thermal stability with glass-transition temperature (Tg) of $131^{\circ}C$. The PL maximum of BETF in solution and film were 438 nm and 440 nm, respectively, showing pure blue emission. A multilayer device using BETF as emitting material exhibits maximum luminescence efficiency of 2.2 cd/A and a pure blue emission (Commission Internationale de L'Eclairage (CIE) coordinates of x = 0.15, y = 0.10).

Keywords

References

  1. Tang, C. W.; Vanslyke, S. A. Appl. Phys. Lett. 1987, 51, 913. https://doi.org/10.1063/1.98799
  2. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Mackay, R. N.; Friend, R. H.; Burns, P. L.; Holms, A. B. Nature 1990, 347, 539. https://doi.org/10.1038/347539a0
  3. Noda, T.; Ogawa, H.; Noma, N.; Shirota, Y. J. Mater. Chem. 1999, 2, 2177.
  4. Kim, Y. H.; Kwon, S. K.; Yoo, D. S.; Rubner, M. F.; Wrighton, M. S. Chem. Mater. 1997, 9, 2699. https://doi.org/10.1021/cm970586x
  5. Kim, Y. H.; Jeong, H. C.; Kim, S. H.; Yang, K.; Kwon, S. K. Adv. Funct. Mater. 2005, 15, 1799. https://doi.org/10.1002/adfm.200500051
  6. Shi, J.; Tang, C. W. Appl. Phys. Lett. 2002, 80, 3201. https://doi.org/10.1063/1.1475361
  7. Liu, T. H.; Shen, W. J.; Balaganesan, B.; Yen, C. K.; Iou, C. Y.; Chen, H. H.; Chen, C. H. Synth. Met. 2003, 137, 1033. https://doi.org/10.1016/S0379-6779(02)00891-3
  8. Kim, Y. H.; Shin, D. C.; Kim, S. H.; Ko, C. H.; Yu, H. S.; Chae, Y. S.; Kwon, S. K. Adv. Mater. 2001, 13, 1690. https://doi.org/10.1002/1521-4095(200111)13:22<1690::AID-ADMA1690>3.0.CO;2-K
  9. Kim, Y. H.; Lee, S. J.; Jung, S. Y.; Byeon, K. N.; Kim, J. S.; Shin, S. C.; Kwon, S. K. Bull. Korean Chem. Soc. 2007, 28, 443. https://doi.org/10.5012/bkcs.2007.28.3.443
  10. So, K. H.; Park, H. T.; Shin, S. C.; Lee, S. K.; Lee, D. H.; Lee, K. H.; Oh, H. Y.; Kwon, S. K.; Kim, Y. H. Bull. Korean Chem. Soc. 2009, 30, 1611. https://doi.org/10.5012/bkcs.2009.30.7.1611
  11. Benzman, R.; Faulkner, L. R. J. Am. Chem. Soc. 1972, 94, 6317. https://doi.org/10.1021/ja00773a011
  12. Berlan, I. B. Handbook of Fluorescence Spectra of Aromatic Molecules, 2nd ed.; Academic Press: New York, 1971.
  13. Kim, Y. H.; Kwon, S. K. J. Appl. Polym. Sci. 2006, 100, 2151. https://doi.org/10.1002/app.23602
  14. Garay, R. O.; Narmann, H.; Mullen, K. Macromolecules 1994, 27, 1922. https://doi.org/10.1021/ma00085a040
  15. Shih, H. T.; Lin, C. H.; Shih, H. H.; Cheng, C. H. Adv. Mater. 2002, 14, 1409. https://doi.org/10.1002/1521-4095(20021002)14:19<1409::AID-ADMA1409>3.0.CO;2-O
  16. Danel, K.; Hwang, T. H.; Lin, J. T.; Tao, Y. T.; Chen, C. H. Chem. Mater. 2002, 14, 3860. https://doi.org/10.1021/cm020250+
  17. Yu, M. X.; Duan, J. P.; Lin, C. H.; Chung, C. H.; Tao, Y. T. Chem. Mater. 2002, 14, 3958. https://doi.org/10.1021/cm020414m
  18. Wei, Y.; Chen, C. T. J. Am. Chem. Soc. 2007, 129, 7478. https://doi.org/10.1021/ja070822x
  19. Rathnayake, H. P.; Cirpan, A.; Delen, Z.; Lahti, P. M.; Karasz, F. E. Adv. Funct. Mater. 2007, 17, 115. https://doi.org/10.1002/adfm.200600089
  20. Montes, V. A.; Perez, B. C.; Agarwal, N.; Shinar, J.; Anzenbacher, P. J. Am. Chem. Soc. 2006, 128, 12436. https://doi.org/10.1021/ja064471i
  21. Culligan, S. W.; Chen, A. C-A.; Wallace, J. U.; Klubek, K. P.; Tang, C. W.; Chen, S. H. Adv. Funct. Mater. 2006, 16, 1481. https://doi.org/10.1002/adfm.200500785
  22. Tang, C.; Liu, F.; Xia, Y. J.; Lin, J.; Xie, L. H.; Zhong, G. Y.; Fan, Q. L.; Huang, W. Org. Electron 2006, 7, 155. https://doi.org/10.1016/j.orgel.2006.01.001
  23. Park, J. W.; Kang, P.; Park, H.; Oh, H. Y.; Yang, J. H.; Kim, Y. H.; Kwon, S. K. Dyes Pigments 2010, 85, 93. https://doi.org/10.1016/j.dyepig.2009.10.009

Cited by

  1. Solution Processable Indoloquinoxaline Derivatives Containing Bulky Polyaromatic Hydrocarbons: Synthesis, Optical Spectra, and Electroluminescence vol.76, pp.11, 2011, https://doi.org/10.1021/jo2004764
  2. The development of anthracene derivatives for organic light-emitting diodes vol.22, pp.22, 2012, https://doi.org/10.1039/c2jm16855c
  3. Highly rigid and twisted anthracene derivatives: a strategy for deep blue OLED materials with theoretical limit efficiency vol.22, pp.6, 2012, https://doi.org/10.1039/C2JM16056K
  4. Chain Length Effect of Dialkoxynaphthalene End-Capped Divinylbenzene for OTFT vol.33, pp.2, 2012, https://doi.org/10.5012/bkcs.2012.33.2.420
  5. Poly(1,4-bis((E)-2-(3-dodecylthiophen-2-yl)vinyl)benzene) for Solution Processable Organic Thin Film Transistor vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1659
  6. 2-Triphenylsilyl-9,10-di-1-naphthalenylanthracene and its Application for Blue Organic Light Emitting Diodes vol.34, pp.7, 2013, https://doi.org/10.5012/bkcs.2013.34.7.2211
  7. Extremely deep blue and highly efficient non-doped organic light emitting diodes using an asymmetric anthracene derivative with a xylene unit vol.49, pp.41, 2013, https://doi.org/10.1039/c3cc41441h
  8. Synthesis and optical properties of a fluorene-benzothiadiazole anthracene copolymer vol.283, pp.None, 2010, https://doi.org/10.1016/j.synthmet.2021.116970