References
- Joannopoulos, J. D.; Meade, R. D.; Winn, J. N. Photonic Crystals:Molding the Flow of Light; Princeton University Press: Princeton,1995.
- John, S. Phys. Rev. Lett. 1987, 58, 2486. https://doi.org/10.1103/PhysRevLett.58.2486
- Noda, S.; Chutinan, A.; Imada, M. Nature 2000, 407, 608. https://doi.org/10.1038/35036532
- Shkunov, M. N.; DeLong, M. C.; Raikh, M. E.; Vardeny, Z. V.;Zakhidov, A. A.; Barughman, R. H. Synthetic Matals 2001, 116,485. https://doi.org/10.1016/S0379-6779(00)00420-3
- Braun, P. V.; Rinne, S. A.; Garcia-Santamaria, F. Adv. Mater. 2006,18, 2665. https://doi.org/10.1002/adma.200600769
- Lee, W.; Pruzinsky, S. A.; Braun, P. V. Adv. Mater. 2002, 14, 271. https://doi.org/10.1002/1521-4095(20020219)14:4<271::AID-ADMA271>3.0.CO;2-Y
- Pruzinsky, S. A.; Braun, P. V. Adv. Func. Mater. 2005, 15, 1995. https://doi.org/10.1002/adfm.200500345
- Lee, K.; Asher, S. A. J. Am. Chem. Soc. 2000, 122, 9534. https://doi.org/10.1021/ja002017n
- Lee, Y. J.; Braun, P. V. Adv. Mater. 2003, 15, 563. https://doi.org/10.1002/adma.200304588
- Lin, S.-Y.; Chow, E.; Hietala, V.; Villeneuve, P. R.; Joannopoulos,J. D. Science 1998, 282, 274. https://doi.org/10.1126/science.282.5387.274
- Noda, S.; Tomoda, K.; Yamamoto, N.; Chutinan, A. Science 2000,289, 604. https://doi.org/10.1126/science.289.5479.604
- Campbell, M.; sharp, D. N.; Harrison, M. T.; Denning, R. G.; Turberfield,A. J. Nature 2000, 404, 53. https://doi.org/10.1038/35003523
- Jeon, S.; Park, J. U.; Cirelli, R.; Yang, S. M.; Heitzman, C. E.;Braun, P. V.; Kenis, P. J. A.; Rogers, J. A. Proc. Natl. Acad. Sci. USA 2004, 101, 12428. https://doi.org/10.1073/pnas.0403048101
- Griesebock, B.; Egen, M.; Zentel, R. Chem. Mater. 2002, 14, 4023. https://doi.org/10.1021/cm025613k
- Lee, W.; Chan, A.; Bevan, M. A.; Lewis, J. A.; Braun, P. V. Langmuir2004, 20, 5262. https://doi.org/10.1021/la035694e
- van Blaaderen, A.; Ruel, R.; Wiltzius, P. Nature 1997, 385, 321. https://doi.org/10.1038/385321a0
- Jiang, P.; Hwang, K. S.; Mittleman, D. M.; Bertone, J. F.; Colvin,V. L. J. Am. Chem. Soc. 1999, 121, 11630. https://doi.org/10.1021/ja9903476
- Jiang, P.; Ostojic, G. N.; Narat, R.; Mittleman, D. M.; Colvin, V. L.Adv. Mater. 2001, 13, 389. https://doi.org/10.1002/1521-4095(200103)13:6<389::AID-ADMA389>3.0.CO;2-L
- Velev, O. D.; Kaler, E. W. Adv. Mater. 2000, 12, 531. https://doi.org/10.1002/(SICI)1521-4095(200004)12:7<531::AID-ADMA531>3.0.CO;2-S
- Vlasov, Y. A.; Bo, X. Z.; Sturm, J. C.; Norris, D. J. Nature 2001,414, 289. https://doi.org/10.1038/35104529
- Xia, Y.; Gates, B.; Yin, Y.; Lu, Y. Adv. Mater. 2000, 12, 693. https://doi.org/10.1002/(SICI)1521-4095(200005)12:10<693::AID-ADMA693>3.0.CO;2-J
- Albota, M.; Beljonne, D.; Bredas, J.-L.; Ehrlich, J. E.; Fu, J.-Y.;Heikal, A. A.; Hess, S. E.; Kogej, T.; Levin, M. D.; Marder, S. R.;McCord-Maughon, D.; Perry, J. W.; Rockel, H.; Rumi, M.; Subramaniam,G.; Webb, W. W.; Wu, X.-L.; Xu, C. Science 1998, 281,1653. https://doi.org/10.1126/science.281.5383.1653
- Sun, H.-B.; Kawakami, T.; Xu, Y.; Ye, J.-Y.; Matuso, S.; Misawa,H.; Miwa, M.; Kaneko, R. Opt. Lett. 2000, 25, 1110. https://doi.org/10.1364/OL.25.001110
- Egen, M.; Zentel, R. Chem. Mater. 2002, 14, 2176. https://doi.org/10.1021/cm010375z
- Caruso, F. Colloids and Colloid Assemblies; Synthesis, Modification, Organization and Utilization of Colloid Particles; Wiley-VCH: Weinheim, 2003.
- Dong, H.; Lee, S. Y. Macromol. Res. 2009, 17, 397. https://doi.org/10.1007/BF03218880
- Goodwin, J. W.; Hearn, J.; Ottewill, R. H. Colloid Polym. Sci.1974, 252, 464. https://doi.org/10.1007/BF01554752
- Odian, G. Principles of Polymerization, 3rd ed.; John Wiley and Sons: New York, 1991.
- Checoury, X.; Enoch, S.; Lopez, C.; Blanco, A. Appl. Phys. Lett.2007, 90, 161131. https://doi.org/10.1063/1.2724916
- Lee, W.; Braun, P. V. Mater. Sci. Eng. C 2007, 27, 961. https://doi.org/10.1016/j.msec.2006.06.016
- Ma, X.; Lu, J. Q.; Brock, R. S.; Jacobs, K. M.; Yang, P.; Hu, X.Phys. Med. Biology 2003, 48, 4165. https://doi.org/10.1088/0031-9155/48/24/013
Cited by
- Rapid Fabrication of an Inverse Opal TiO2 Photoelectrode for DSSC Using a Binary Mixture of TiO2 Nanoparticles and Polymer Microspheres vol.21, pp.16, 2011, https://doi.org/10.1002/adfm.201002489
- Modification of the refractive-index contrast in polymer opal films vol.21, pp.24, 2011, https://doi.org/10.1039/c1jm00063b
- Non-aqueous microgel particles: synthesis, properties and applications vol.10, pp.47, 2014, https://doi.org/10.1039/C4SM01834F
- Optically pumped distributed feedback dye lasing with slide-coated TiO_2 inverse-opal slab as Bragg reflector vol.39, pp.16, 2014, https://doi.org/10.1364/OL.39.004743
- Beads with Nanotextured Surfaces as Photoanodes in Dye-Sensitized Solar Cells vol.7, pp.9, 2014, https://doi.org/10.1002/cssc.201402277
- Direct Current Electric Field Assembly of Colloidal Crystals Displaying Reversible Structural Color vol.8, pp.8, 2014, https://doi.org/10.1021/nn502107a
- Synthesis, characterization and optical properties of graphene oxide-polystyrene nanocomposites vol.26, pp.3, 2015, https://doi.org/10.1002/pat.3435
- Nano- and Submicrometer-Sized Spherical Particle Fabrication Using a Submicroscopic Droplet Formed Using Selective Laser Heating vol.120, pp.4, 2016, https://doi.org/10.1021/acs.jpcc.5b10691
- Inverse opal photoelectrode of Nb-doped TiO2 nanoparticles for dye-sensitized solar cell vol.73, pp.9, 2016, https://doi.org/10.1007/s00289-016-1684-5
- Tunable Temperature Response of a Thermochromic Photonic Gel Sensor Containing N-Isopropylacrylamide and 4-Acryloyilmorpholine vol.17, pp.6, 2017, https://doi.org/10.3390/s17061398
- Flexible polymer opal films prepared by slide coating from alcoholic media vol.25, pp.5, 2017, https://doi.org/10.1007/s13233-017-5061-5
- Self-Assembled Colloidal Photonic Crystal on the Fiber Optic Tip as a Sensing Probe vol.9, pp.2, 2017, https://doi.org/10.1109/JPHOT.2017.2689075
- Optical properties of CCA films prepared with poly[styrene-co-sodium 1-allyloxy-2-hydroxypropane sulphonate] particles vol.19, pp.sup8, 2015, https://doi.org/10.1179/1432891715Z.0000000001647
- Inverse Opal Photonic Gel Containing Charge Stabilized Boronate Anions for Glucose Sensing at Physiological pH pp.18626254, 2018, https://doi.org/10.1002/pssr.201800416
- Colorimetric Humidity Sensor Using Inverse Opal Photonic Gel in Hydrophilic Ionic Liquid vol.18, pp.5, 2018, https://doi.org/10.3390/s18051357
- 무유화중합에 의한 단분산 Submicron 크기의 고분자 미립자의 제조 vol.13, pp.3, 2010, https://doi.org/10.17702/jai.2012.13.3.101
- An anion sensing photonic gel by hydrogen bonding of anions to the N-allyl-Nprime-ethyl urea receptor vol.2, pp.16, 2014, https://doi.org/10.1039/c3ta14889k
- Part 1 : Styrene과 COPS-I의 무유화공중합 vol.15, pp.3, 2010, https://doi.org/10.17702/jai.2014.15.3.093
- Simultaneous Nitrogen Doping and Pore Generation in Thermo-Insulating Graphene Films via Colloidal Templating vol.8, pp.46, 2010, https://doi.org/10.1021/acsami.6b09836
- Low-Power All-Organic Electrophoretic Display Using Self-Assembled Charged Poly(t-butyl methacrylate) Microspheres in Isoparaffinic Fluid vol.10, pp.14, 2010, https://doi.org/10.1021/acsami.7b17122
- Study of the Synergistic Effect of the Nanoparticle-Surfactant-Polymer System on CO2 Foam Apparent Viscosity and Stability at High Pressure and Temperature vol.34, pp.11, 2020, https://doi.org/10.1021/acs.energyfuels.0c02435
- Investigation of Polystyrene-Based Microspheres from Different Copolymers and Their Structural Color Coatings on Wood Surface vol.11, pp.1, 2021, https://doi.org/10.3390/coatings11010014
- Fabrication of inverse opal photonic gel sensors on flexible substrates by transfer process vol.21, pp.15, 2010, https://doi.org/10.1039/d1lc00199j
- Full‐Color Electrophoretic Display Using Charged Colloidal Arrays of Core-Shell Microspheres with Enhanced Color Tunability in Non‐Polar Medium vol.9, pp.21, 2010, https://doi.org/10.1002/adom.202100833
- Microgel Preparation by Miniemulsion Polymerization of Passerini Multicomponent Reaction Derived Acrylate Monomers vol.222, pp.24, 2010, https://doi.org/10.1002/macp.202100328