DOI QR코드

DOI QR Code

서울지역 대기 중의 PAHs 분포 특성 및 발생원

Distribution and emission source of PAHs in ambient air of Seoul

  • 박진수 (국립환경과학원 환경건강위해성연구부 화학물질거동연구과) ;
  • 윤성규 (한양대학교 건설환경공학과) ;
  • 배우근 (한양대학교 건설환경공학과)
  • Park, Jin-Soo (National Institute of Environmental Reserch of Environmental Research) ;
  • Yoon, Seong-Kyu (Civil & Environmental System Engineering, Hanyang University) ;
  • Bae, Woo-Keun (Civil & Environmental System Engineering, Hanyang University)
  • 투고 : 2010.04.07
  • 심사 : 2010.04.26
  • 발행 : 2010.06.25

초록

본 연구는 화석 연료를 소비하는 산업 등과 같이 인위적인 활동 과정에서 불완전 연소로 인하여 주로 발생하는 PAHs류의 지역적 분포 및 발생원 규명을 위하여 수행하였다. 서울지역 대기시료를 채취하여 분석한 결과, 서울 도심과 외곽 지역의 대기 중 입자상과 가스상을 합한 총 PAHs 평균농도는 관악지역이 $16.52\;ng/m^3$, 서대문 지역은 $59.10\;ng/m^3$로 조사되었으며, 주로 phenanthrene, fluoranthene, pyrene, fluorene이 전체 PAH의 55.6% (관악)와 60.8%(서대문)를 차지하고 있는 것으로 나타났다. 또한, 두 지역의 PAHs의 발생원을 파악한 결과 관악과 서대문 지역 모두 대기 중 PAHs의 발생원은 동일하고, 특히 서대문 지점에서는 자동차에 의한 영향이 큰 것으로 나타났다.

Air samples were collected and analyzed to investigate regional level of PAHs and its emission sources. The average concentrations of PAHs in the suburban (Gwanak) and in the urban (Seodaemun) area were $16.52\;ng/m^3$ and $59.1\;ng/m^3$, respectively. Phenanthrene, fluoranthene, pyrene, and fluorene were predominant PAHs species, as their sum contributed to 55.6% and 60.8% of the total PAHs, respectively. The possible major source of PAHs was suspect to be the combustion of diesel fueled vehicles in both areas, particularly for Seodaemun.

키워드

참고문헌

  1. S. S. Park, Y. J. Kim and C. H. Kang, Atmos. Environ., 36, 917-2924(2002). https://doi.org/10.1016/S1352-2310(01)00512-X
  2. M. Dimashki, L. H. Lim, R. M. Harrison and S. Harrad, Environ Sci Technol, 35, 2264-2267(2001). https://doi.org/10.1021/es000232y
  3. T. Harner and T. F. Bidleman, Envion. Sci. Technol., 32, 1494-1502(1998). https://doi.org/10.1021/es970890r
  4. R. Lohmann, T. Harner, G. O. Thomas and K. C. Jones, Environ. Sci. Technol., 34, 4943-4951(2000). https://doi.org/10.1021/es9913232
  5. C. L. Gigliotti, J. Dachs, E. D. Neison, P. A. Brunciak and S. J. Eisenreich, Environ. Sci. Technol., 34, 3547-3554(2000). https://doi.org/10.1021/es9912372
  6. G. C. Fang, C. N. Chang, Y. S. Wu, P. P. C. Fu, K. F. Chang and D. G. Yang, Sci. Total Environ., 232, 177-184(1999). https://doi.org/10.1016/S0048-9697(99)00092-3
  7. Y. C. Chan, R. W. Simpson, G. H. Mctainsh and P. D. Vowles, Atmos. Environ., 31, 3773-3785(1997). https://doi.org/10.1016/S1352-2310(97)00213-6
  8. P. D. Hien, N. T. Binh, Y. Truong, N. T. Ngo and L. N. Sieu, Atmos. Environ., 35, 2669-2678(2001). https://doi.org/10.1016/S1352-2310(00)00574-4
  9. C. Venkataraman, S. Thomas and P. Kulkarni, J. Aerosol Sci., 30, 759-770(1999). https://doi.org/10.1016/S0021-8502(98)00761-7
  10. T. V. Nune and C. A. Pio, Atmos. Environ., 27, 1339-1346(1993). https://doi.org/10.1016/0960-1686(93)90259-2
  11. T. F. Bidleman, W. N. Billings and W. T. Foreman, Envion. Sci. Technol., 20, 1038-1043(1986). https://doi.org/10.1021/es00152a013
  12. J. F. Pankow, J. M. Storey and H. Yamasaki, Envion. Sci. Technol., 27, 2220-2226(1993). https://doi.org/10.1021/es00047a032
  13. G. A. Patterson and J. Wagman, J. Aerosol Sci., 8, 269-279(1977). https://doi.org/10.1016/0021-8502(77)90046-5
  14. J. Lin, K. E. Noll and T. M. Holsen, Aerosol Sci. Tech., 20, 239-252(1994). https://doi.org/10.1080/02786829408959680
  15. P. Lestari, A. K. Oskouie and K. E. Noll, Atmos. Environ., 37, 2507-2516(2003). https://doi.org/10.1016/S1352-2310(03)00151-1
  16. M. J. Kleeman and G. R. Cass, Atmos. Environ., 32, 2803-2816(1998). https://doi.org/10.1016/S1352-2310(98)00001-6
  17. J. J. Schauer, M. J. Kleeman, G. R. Cass and B. R. T. Simoneit, Envion. Sci. Technol., 36, 1169-1180(2002). https://doi.org/10.1021/es0108077
  18. M. J. Mysliwiec and M. J. Kleeman, Envion. Sci. Technol., 36, 5376-5384(2002). https://doi.org/10.1021/es020832s
  19. M. Zheng, G. R. Cass, J. J. Schauer and E. S. Edgerton, Envion. Sci. Technol., 36, 2361-2371(2002). https://doi.org/10.1021/es011275x
  20. P. K. H. Lee, J. R. Brook, E. D. Zlotorzynska, S. A. M. Mabury, Environ. Sci. Technol., 37, 4831-4840(2003). https://doi.org/10.1021/es026473i
  21. R. K. Larsen and J. E. Baker, Environ. Sci. Technol., 37, 873-1881(2003). https://doi.org/10.1021/es025947a
  22. A. M. Caricchia, M. P. Chiavarini and M. Pezza, Atmos. Environ., 33, 3731-3738(1999). https://doi.org/10.1016/S1352-2310(99)00199-5
  23. R. Abrantes, J. V. Assuncao, and C. R. Pesquero, Atmos. Environ., 38, 1631-1640(2004). https://doi.org/10.1016/j.atmosenv.2003.11.012
  24. I. G. Kavouras, P. Koutrakis, M. Tsapakis, E. Lagoudaki, E. G. Stephanou, D. V. Baer and P. Oyola, Environ. Sci. Technol., 35, 2288-2294(2001). https://doi.org/10.1021/es001540z
  25. M. Mandalakis, M. Tsapakis, A.Tsoga, and E. G. Stephanou, Atmos. Environ., 36, 4023-4035(2002). https://doi.org/10.1016/S1352-2310(02)00362-X
  26. R. M. Dickhut, E. A. Canuel, K. E. Gustafson, K. Liu, K. M. Arzayus, S. E. Walker, G. Edgecombe, M. O. Gaylker and E. H. Macdonald, Environ. Sci. Techol., 34, 4635-4640(2000). https://doi.org/10.1021/es000971e
  27. M. F. Simcik, T. P. Franz, H. Zhang and S. J. Eisenreich, Environ. Sci. Technol., 32, 251-257(1998). https://doi.org/10.1021/es970557n

피인용 문헌

  1. The Qualitative Rate Estimation of PAHs in Carbon Compounds of Particles in Vehicles Exhaust Gas vol.30, pp.5, 2014, https://doi.org/10.5572/KOSAE.2014.30.5.449
  2. Speciation and source identification of organic compounds in PM 10 over Seoul, South Korea vol.144, 2016, https://doi.org/10.1016/j.chemosphere.2015.10.041
  3. Regulation Standard of Fine Particles and Control Techniques of Emission Sources vol.29, pp.4, 2013, https://doi.org/10.5572/KOSAE.2013.29.4.486
  4. Study on analysis of PAHs in consumer products vol.27, pp.4, 2014, https://doi.org/10.5806/AST.2014.27.4.201