DOI QR코드

DOI QR Code

Determination and preconcentration of Cu(II) using microcrystalline p-Dichlorobenzene loaded with salicylaldoxime

Salicylaldoxime이 내포된 p-Dichlorobenzene 미세결정을 이용한 Cu(II)의 예비농축 및 정량

  • Lee, Ha-Na (Department of Chemistry, The University of Suwon) ;
  • Choi, Hee-Seon (Department of Chemistry, The University of Suwon)
  • Received : 2010.01.15
  • Accepted : 2010.05.03
  • Published : 2010.06.25

Abstract

A technique for the determination of trace Cu(II) in various real samples by FAAS after the column preconcentration onto p-dichlorobenzene-SA adsorbent, which is microcrystalline p-dichlorobenzene loaded with salicylaldoxime (SA) has been developed. Several experimental conditions such as pH of the sample solution, the amount of chelating agent salicylaldoxime, the amount of adsorbent p-dichlorobenzene-SA, and flow rate of sample solution were optimized. The interfering effects of various concomitant ions were investigated. $CN^-$ interfered more seriously than any other ions. However, the interference by $1\;{\mu}g\;mL^{-1}\;CN^-$ could be overcome completely by controlling the concentration of Ni(II) to $20\;{\mu}g\;mL^{-1}$. The linear range, correlation coefficient ($R^2$) and detection limit obtained by this technique were $3.0\sim100\;ng\;mL^{-1}$, 0.9901, and $3.1\;ng\;mL^{-1}$, respectively. For validating this technique, the aqueous samples (wastewater, reservoir water and stream water) and the food samples (orange juice, fresh egg and skim milk) were used. Recovery yields of 93~104% were obtained. These measured mean values were not differents from ICP-MS data at 95% confidence level. The good results were obtained from the experiments using the rice flour certified reference material (CRM) sample. Based on the experimental results, it was found that this technique could be applied to the preconcentration and determination of Cu(II) for various real samples.

Salicylaldoxime (SA)이 내포되어 있는 미세결정 p-dichlorobenzene 흡착제(p-dichlorobenzene-SA)를 이용하여 시료에 흔적량으로 들어있는 Cu(II)를 예비농축시킨 후 불꽃 원자흡수분광법으로 정량하는 방법을 개발하였다. 시료 용액의 pH, 킬레이트제 salicylaldoxime의 양, 흡착제 p-dichlorobenzene-SA의 양 그리고 시료 용액의 흐름속도 등 여러 실험조건을 최적화하였다. 여러 공존이온에 대한 방해효과를 조사한 결과, $CN^1$가 다른 이온들보다 비교적 심하게 방해하였다. $1\;{\mu}g\;mL^{-1}\;CN^-$에 의한 방해효과는 Ni(II)를$20\;{\mu}g\;mL^{-1}$ 되도록 조절한 결과, 완전히 제거할 수 있었다. 본 방법으로 얻은 직선 감응범위, 상관계수($R^2$) 및 검출한계는 각각 $3.0\sim100\;ng\;mL^{-1}$, 0.9901, 및 $3.1\;ng\;mL^{-1}$ 이었다. 본 방법을 실제 시료에 적용가능 여부를 확인하기 위해 수용액 시료(폐수, 저수지물 및 시냇물)와 식품시료(오렌지 쥬스, 생계란 및 탈지분유)에 응용하였다. 회수율은 93~104% 범위이었으며, ICP-MS를 이용하여 직접 측정한 값과 본 방법으로 측정한 값을 비교한 결과, 95% 신뢰수준에서 잘 일치하였다. 본 방법을 쌀가루 인증표준물질(certified reference material, CRM) 시료에 응용해 보았으며 좋은 결과를 얻었다. 실험 결과들로부터 본 방법은 여러 실제 시료에 들어있는 Cu(II)를 농축 및 정량하는데 응용할 수 있음을 확인하였다.

Keywords

References

  1. C. N. Sawyer, P. L. McCarty, and G. F. Parkin, "Chemistry for Environmental Engineering", 4th ed., 634, McGraw-Hill, New York, U.S.A., 1966.
  2. D. Vendramini, V. Grassi and E. A. G. Zagatto, Anal. Chim. Acta, 570, 124-128(2006). https://doi.org/10.1016/j.aca.2006.04.008
  3. A. B. Tabrizi, J. Hazard Mater., 139, 260-264(2007). https://doi.org/10.1016/j.jhazmat.2006.06.024
  4. A. M. H. Shabani, S. Dadfarnia and Z. Dehghani, Talanta, 79, 1066-1070(2009). https://doi.org/10.1016/j.talanta.2009.02.008
  5. M. A. Belarra, C. Crespo, M. Resano and J. R. Castillo, Spectrochim. Acta B. 55, 865-874(2000). https://doi.org/10.1016/S0584-8547(00)00217-2
  6. E. L. Silva, P. S. Roldan and M. F. Gine, J. Hazard Mater,, 171, 1133-1138(2009). https://doi.org/10.1016/j.jhazmat.2009.06.127
  7. T. Kagawa, M. Ohno, T. Seki and K. Chikama, Talanta, 79, 1001-1005(2009). https://doi.org/10.1016/j.talanta.2009.02.017
  8. M. Lin, M. Cho, W. Choe, Y. Son and Y. Lee, Electrochim. Acta, 54, 7012-7017(2009). https://doi.org/10.1016/j.electacta.2009.07.025
  9. B. C. Janegitz, L. H. Marcolino-Junior, S. P. Campana-Filho, R. C. Faria and O. Fatibello-Filho, Sensor Actuat. B-Chem., 142, 260-266(2009). https://doi.org/10.1016/j.snb.2009.08.033
  10. W. Zeng, Y. Chen, H. Cui, F. Wu, Y. Zhu and J. S. Fritz, J. Chromatogr. A, 1118, 68-72(2006). https://doi.org/10.1016/j.chroma.2006.01.065
  11. K. Chayama and E. Sekido, Anal. Chim, Acta. 248, 511-515(1991). https://doi.org/10.1016/S0003-2670(00)84669-3
  12. M. Ghaedi, F. Ahmadi and M. Soylak, J. Hazard Mater., 147, 226-231(2007). https://doi.org/10.1016/j.jhazmat.2006.12.070
  13. F. Zie, X. Lin, X. Wu and Z. Xie, Talanta, 74, 836-843(2008). https://doi.org/10.1016/j.talanta.2007.07.018
  14. N. Pourreza and R. Hoveizavi, Anal. Chim. Acta, 549, 124-128(2005). https://doi.org/10.1016/j.aca.2005.06.037
  15. E. A. Moawed and M. F. El-Shahat, React. Funct. Polym., 66, 720-727(2006). https://doi.org/10.1016/j.reactfunctpolym.2005.10.026
  16. V. A. Lemos, M. A. Bezerra and F. A. C. Amorim, J. Hazard Mater., 157, 613-619(2008). https://doi.org/10.1016/j.jhazmat.2008.01.027
  17. S. L. C. Ferreira and C. F. de Brito, Anal. Sci., 15, 189-172(1999). https://doi.org/10.2116/analsci.15.189
  18. M. Satake, T. Nagahiro and B. K. Puri, J. Anal. At, Spectrom. 7, 183-186(1992). https://doi.org/10.1039/ja9920700183
  19. T. J. Lee and H. S. Choi, Bull. Korean Chem. Soc. 23, 861-864(2002). https://doi.org/10.5012/bkcs.2002.23.6.861
  20. D. A. Skoog, F. J. Holler and S. R. Crouch, "Principles of Instrumental Analysis" 6th Ed., 20, Thomson Brooks/Cole, U.S.A., 2007.
  21. D. C. Harris, "Quantitative Chemical Analysis" 7th Ed., 60, W. H. Freeman, U.S.A., 2007.
  22. J. A. Dean, "Lange's Handbook of Chemistry", 15th ed., 8.9, McGraw-Hill, U.S.A., 1999.
  23. T. Tshuma, G. Alarcon-Angeles, E. Palacios-Beas, R. Vargas-Garcia, M. T. Ramirez-Silva and A. Rojas-Harnandez, Spectrochim. Acta A, 66, 879-883(2007). https://doi.org/10.1016/j.saa.2006.05.004

Cited by

  1. Color Stability of the Bioplastic containing Sorghum Extract Chelated by Fe(II) and Cu(II) vol.27, pp.1, 2015, https://doi.org/10.5764/TCF.2015.27.1.62