DOI QR코드

DOI QR Code

Study on the immobilization of plant glutathione S-transferase for development of herbicide detection kit

제초제 검출 키트 개발을 위한 식물 해독효소 고정화 연구

  • Cho, Hyun-Young (Department of Chemistry, College of Natural Sciences, Chung-Ang University) ;
  • Lee, Jin-Joo (Department of Chemistry, College of Natural Sciences, Chung-Ang University) ;
  • Kong, Kwang-Hoon (Department of Chemistry, College of Natural Sciences, Chung-Ang University)
  • 조현영 (중앙대학교 자연과학대학 화학과) ;
  • 이진주 (중앙대학교 자연과학대학 화학과) ;
  • 공광훈 (중앙대학교 자연과학대학 화학과)
  • Received : 2010.02.10
  • Accepted : 2010.02.16
  • Published : 2010.04.25

Abstract

Glutathione S-transferase is known to play a crucial role in detoxification in many cases. To develop a herbicide detection biosensor, we in this study attempted to immobilize glutathione S-transferase enzyme on solid supports, polystyrene and agarose, and Na-alginate. These matrixes were attractive materials for the construction of biosensors and might also have utility for the production of immobilized enzyme bioreactors. We also compared the activities of glutathione-S-transferase immobilized OsGSTF3 and free OsGSTF3. The specific activity of the free enzyme in solution was 3.3 higher than the immobilized enzyme. These results suggest that 50% of the enzyme was bound with the catalytic site in polystyrene-alkylamine bead and immobilized enzymes showed 80% remaining activity until 3 times reuse.

Glutathione S-transferase는 식물의 해독작용에 중추적인 역할을 하는 화학 효소이다. 본 연구에서는 제초제 검출 키트 개발에 응용을 위하여 식물 해독작용에 중추적인 역할을 하는 glutathione Stransferase의 고정화 방법을 연구하였다. Chloroacetanilide계 제초제에 높은 효소 활성을 보이는 벼 유래 OsGSTF3에 공유결합을 통한 polystyrene-alkylamine 비드와 리간드결합을 통한 agarose-aminoalkyl 비드,포괄법을 통한 Na-alginate 비드를 이용하여 고정화를 실시하였다. 정제된 OsGSTF3 10 mg을 사용하여 고정화 하였을 때 0.62 mg/g 비드로 polystyrene-alkylamine에 가장 효율적으로 고정화 되었다. 고정화 된 OsGSTF3의 효소 활성은 야생형의 30%를 나타내었으며, 재사용에 의한 효소활성 측정시 3회 까지 처음 활성의 80% 이상을 유지하였다.

Keywords

References

  1. D. Weinrich, P. Jonkheijm, C. Niemeyer and H. Waldmann, Angew. Chem. Int. Edit., 48, 7744-7751(2009). https://doi.org/10.1002/anie.200901480
  2. D. Brady and J. Jordaan, Biotechnol. Lett., 31, 1639-1650(2009). https://doi.org/10.1007/s10529-009-0076-4
  3. U. Hanefeld, L. Gardossi and E. Magner, Chem. Soc. Rev., 38, 453-468(2009). https://doi.org/10.1039/b711564b
  4. Y. Kumada, Y. Tokunaga, H. Imanaka, K. Imamura, T. Sakiyama, S. Katoh and K. Nakanishi, Biotechnol. Prog., 22, 401(2006). https://doi.org/10.1021/bp050331l
  5. N. Allocati, L. Federici, M. Masulli and C. D. Ilio, FEBS J., 276, 58(2009). https://doi.org/10.1111/j.1742-4658.2008.06743.x
  6. D. P. Dixon, A. Lapthorn and R. Edwards. Genome Biol., 3, REVIEWS3004. (2002)
  7. R. N. Armstrong, Chem. Res. Toxicol., 4, 131(1987).
  8. D. Sheehan, G. Meade, V. M. Foley and C. A. Dowd, Biochem. J., 360, 1(2001). https://doi.org/10.1042/0264-6021:3600001
  9. W. R. Pearson, Methods Enzymol., 401, 186(2005). https://doi.org/10.1016/S0076-6879(05)01012-8
  10. R. Edwards and D. P. Dixon, Methods Enzymol., 401, 169(2005). https://doi.org/10.1016/S0076-6879(05)01011-6
  11. H.-Y. Cho and K.-H. Kong, BioFactors, 30, 281(2007). https://doi.org/10.1002/biof.5520300410
  12. M. Jain, C. Ghanashyam and A. Bhattacharjee, BMC Genomics, 11, 73(2010). https://doi.org/10.1186/1471-2164-11-73
  13. H.-Y. Cho and K.-H. Kong, Pestic. Biochem. Physiol., 83, 29(2005). https://doi.org/10.1016/j.pestbp.2005.03.005
  14. M. M. Bradford, Anal. Biochem., 72, 248(1976). https://doi.org/10.1016/0003-2697(76)90527-3
  15. U. K. Laemmli, Nature., 227, 680(1970). https://doi.org/10.1038/227680a0
  16. L. A. Delouise and B. L. Miller, Anal. Chem., 77, 1950 (2005). https://doi.org/10.1021/ac0486185