DOI QR코드

DOI QR Code

PROPERTIES OF ZR ALLOY CLADDING AFTER SIMULATED LOCA OXIDATION AND WATER QUENCHING

  • Kim, Hyun-Gil (Nuclear Convergence Technology Division, Korea Atomic Energy Research Institute) ;
  • Kim, Il-Hyun (Nuclear Convergence Technology Division, Korea Atomic Energy Research Institute) ;
  • Jung, Yang-Il (Nuclear Convergence Technology Division, Korea Atomic Energy Research Institute) ;
  • Park, Jeong-Yong (Nuclear Convergence Technology Division, Korea Atomic Energy Research Institute) ;
  • Jeong, Yong-Hwan (Nuclear Convergence Technology Division, Korea Atomic Energy Research Institute)
  • 투고 : 2009.07.29
  • 심사 : 2010.03.15
  • 발행 : 2010.04.30

초록

In order to study the cladding properties of zirconium after a loss-of-coolant accident (LOCA)-simulation oxidation and water quenching test, commercial Zircaloy-4 and two kinds of HANA claddings were oxidized at temperatures ranging from $900^{\circ}C$ to $1250^{\circ}C$ and exposed for 300 s, and then cooled to $700^{\circ}C$ before quenching. Microstructural observations were made to evaluate the matrix characteristics with the chemical compositions after the LOCA-simulation test. Ring compression testing was then performed to compare the ductile behaviour of the HANA and Zircaloy-4 claddings. An X-ray diffraction (XRD) analysis was carried out for temperatures ranging from room temperature to $1250^{\circ}C$ for the oxide layer to verify the oxide crystal structure at each oxidation temperature.

키워드

참고문헌

  1. F. J. Erbacher, S. Leistikow, "Zircaloy fuel cladding behavior in a loss-of-coolant accident: a review", Zirconium in the Nuclear Industry ASTM STP 939, 451 (1987).
  2. U. S. Code of Federal Regulations, Title 10, Energy, Parts 0 to 10, Revised January 1, 1997, U. S. Government Printing Office, Washington, DC.
  3. H. M. Chung, T. F. Kassner, "Embrittlement criteria for Zircaloy fuel cladding applicable to accident situations in Light-Water Reactors": Summary Report NUREG/CR-0344 (1980).
  4. R. E. Pawel, "Oxygen diffusion in beta Zircaloy during steam oxidation", J. Nucl. Mater. 50, 247 (1974). https://doi.org/10.1016/0022-3115(74)90095-6
  5. J. H. Baek, K. B. Park, Y. H. Jeong, "Oxidation kinetics of Zircaloy-4 and Zr-1Nb-1Sn-0.1Fe at temperature of 700-1200$^{\circ}C$", J. Nucl. Mater., 335, 443 (1973)
  6. F. Nagase, T. Otomo and H. Uetsuka, "Oxidation Kinetics of Low-Sn Zircaloy-4 at the Temperature Range from 773 to 1,573 K", J. Nucl. Sci. & Tech. Vol. 40 (4), 213 (2003). https://doi.org/10.3327/jnst.40.213
  7. Y. H. Jeong, S.Y. Park, M.H. Lee, B.K. Choi, J.H. Baek, J.Y. Park, J.H. Kim and H.G. Kim, "Out-of-pile and inpile performance of advanced zirconium alloys (HANA) for high burn-up fuel", J. Nuclear Science and Technology, 43, 977 (2006). https://doi.org/10.3327/jnst.43.977
  8. J.H. Kim, M.H. Lee, B.K. Choi, Y.H. Jeong, "Failure behaviour of Zircaloy-4 cladding after oxidation and water quench", J. Nucl. Mater, 362, 36 (2007). https://doi.org/10.1016/j.jnucmat.2006.10.026
  9. Y. Yan, T.A. Burtseva, M.C. Billone, "High-temperature steam-oxidation behaviour of Zr-1Nb cladding alloy E110", J. Nucl. Mater, 393, 433 (2009). https://doi.org/10.1016/j.jnucmat.2009.06.029
  10. H.M. Chung, T.F. Kassner, "Pseudobinary Zircaloy-Oxygen Phase Diagram", J. Nucl. Mater., 84, 327 (1979). https://doi.org/10.1016/0022-3115(79)90172-7
  11. D. O. Northwood, D. T. Lim, "Phase transformations in zirconium and its alloys", Canadian Metallurgical Quarterly, 18, 441 (1979). https://doi.org/10.1179/000844379795317643
  12. Z. Hozer, C. Gyori, L. Matus, M. Horvath, J. Nucl. Mater, 373, 415 (2008). https://doi.org/10.1016/j.jnucmat.2007.07.002
  13. J.-C. Brachet, V. Vandenberghe, "Comments to papers of J.H. Kim et al. [1] and M. Grosse et al. [2] recently published in JNM "On the hydrogen uptake of Zircaloy-4 and M5" alloys subjected to steam oxidation in the 1100-1250$^{\circ}C$ temperature range", J. Nucl. Mater, 395, 169 (2009). https://doi.org/10.1016/j.jnucmat.2009.09.017
  14. J. H. Baek, Y. H. Jeong, "Breakaway phenomenon of Zr-based alloys during a high-temperature oxidation", J. Nucl. Mater, 372, 152 (2008). https://doi.org/10.1016/j.jnucmat.2007.02.011
  15. Ch. Valot, D. Ciosmak, M.T. Mesnier, and M. Lallemant, "Phase Analysis by Variable-Incidence X-Ray Diffraction: Application to Zirconium Oxidation", Oxidation of Metals, 48 (3/4) (1997).