Abstract
A kind of disk-shape boundary layer pump is designed numerically by using a software of computational fluid dynamics, which is widely used for the special purposes such as artificial hearts, bio-fluidics and transportation of oceanic lives, etc. From the numerical simulation with an axisymmetric model, some benchmark problems are tested and compared with experimental results. The performance of disk pump is graphically visualized from the computational results, and converted to the dimensionless parameters. Finally, the obtained numerical data in the present investigation can be used for the baseline for new design to achieve a more efficient disk pump.