DOI QR코드

DOI QR Code

A Trimmed Spatial Median Estimator Using Bootstrap Method

붓스트랩을 활용한 최적 절사공간중위수 추정량

  • Received : 20100100
  • Accepted : 20100300
  • Published : 2010.04.30

Abstract

In this study, we propose a robust estimator of the multivariate location parameter by means of the spatial median based on data trimming which extending trimmed mean in the univariate setup. The trimming quantity of this estimator is determined by the bootstrap method, and its covariance matrix is estimated by using the double bootstrap method. This extends the work of Jhun et al. (1993) to the multivariate case. Monte Carlo study shows that the proposed trimmed spatial median estimator yields better efficiency than a spatial median, while its covariance matrix based on double bootstrap overcomes the under-estimating problem occurred on single bootstrap method.

본 논문에서는 다변량 자료의 위치모수에 대한 로버스트 추정량으로 공간중위수에 대한 절사 추정량을 제안하였다. 최적절사율은 붓스트랩 방법을 이용하여 결정하였으며, 이중붓스트랩을 활용하여 추정된 절사공간중위수의 공분산행렬을 추정하였다. 모의실험 결과 붓스트랩 방법에 의한 절사공간중위수는 자료가 다변량 코시분포를 따르는 경우 기존 공간중위수에 비하여 작은 평균제곱오차를 보여 효율적인 추정량으로 나타났다. 아울러 이중붓스트랩을 이용한 절사추정량의 공분산행렬 추정량은 단순붓스트랩 방법에 의하여 추정된 공분산행렬이 갖는 과소추정의 문제를 해결하는 방법으로 나타났다.

Keywords

References

  1. 소선하, 이동희, 정병철 (2009). 다변량 자료에서 위치모수에 대한 로버스트 검정, <응용통계연구>, 22, 1355-1364. https://doi.org/10.5351/KJAS.2009.22.6.1355
  2. Arcones, M. A. (1995). Asymptotic normality of multivariate trimmed means, Statistics and Probability Letters, 25, 43-53. https://doi.org/10.1016/0167-7152(94)00204-L
  3. Brown, B. M. (1983). Statistical uses of the spatial median, Journal of the Royal Statistical Society B, 45, 25-30.
  4. Gordaliza , A. (1991). Best approximations to random variables based on trimming procedures, Journal of Approximation Theory, 64, 162-180. https://doi.org/10.1016/0021-9045(91)90072-I
  5. Gower, J. C. (1974). Algorithm AS 78: The mediancentre, Applied Statistics, 23, 466-470. https://doi.org/10.2307/2347150
  6. Hawkins, D. M., Bradu, D. and Kass, G. V. (1984). Location of several outliers in multiple regression data using elemental sets, Technometrics, 26, 197-208. https://doi.org/10.2307/1267545
  7. Hettmansperger, T. P. and Randles, R. H. (2002). A practical affine equivariant multivariate median, Biometrika, 89, 851-860. https://doi.org/10.1093/biomet/89.4.851
  8. Jhun, M., Kang, C. W. and Lee, J. C. (1993). Bootstrapping trimmed estimators in statistical inferences, Proceedings of the Asian Conference on Statistical Computing.
  9. Masse, J-C. (2004). Asymptotics for the Tukey depth process, with an application to a multivariate trimmed mean, Bernoulli, 10, 379-419.
  10. Masse, J-C. (2009). Multivariate trimmed means based on the Tukey depth, Journal of Statistical Planning and Inference, 139, 366-384. https://doi.org/10.1016/j.jspi.2008.03.038
  11. Masse, J-C. and Plante, J-F. (2003). A Monte Carlo study of the accuracy and robustness of ten bivariate location estimators, Computational Statistics & Data Analysis, 42, 1-26. https://doi.org/10.1016/S0167-9473(02)00103-2
  12. Somorcik, J. (2006). Tests using spatial median, Austrian Journal of Statistics, 35, 331-338.
  13. Vandev, D. L. (1995). Computing of trimmed $L_1$ median, In Multidimensional Analysis in Behavioral Sciences. Philosophic to technical, 152-157.
  14. Zuo, Y. (2002). Multivariate trimmed means based on data depth, In Statistical Data Analysis Based on the L1-Norm and Related Methods, (ed. by Y. Dodge), 313-322.