DOI QR코드

DOI QR Code

Analysis of Total Crime Count Data Based on Spatial Association Structure

공간적 연관구조를 고려한 총범죄 자료 분석

  • Choi, Jung-Soon (Division of Biostatistics and Epidemiology, Medical University of South Carolina) ;
  • Park, Man-Sik (Department of Statistics, Sungshin Women's University) ;
  • Won, Yu-Bok (Department of Information System Planning, Seoul Metropolitan Government) ;
  • Kim, Hag-Yeol (Department of Urban Engineering, Seokyeong University) ;
  • Heo, Tae-Young (Department of Data Information, Korea Maritime University)
  • Received : 20091100
  • Accepted : 20100100
  • Published : 2010.04.30

Abstract

Reliability of the estimation is usually damaged in the situation where a linear regression model without spatial dependencies is employed to the spatial data analysis. In this study, we considered the conditional autoregressive model in order to construct spatial association structures and estimate the parameters via the Bayesian approaches. Finally, we compared the performances of the models with spatial effects and the ones without spatial effects. We analyzed the yearly total crime count data measured from each of 25 districts in Seoul, South Korea in 2007.

공간자료분석에서 공간적 상관성을 배제한 일반적인 회귀모형을 통한 모수 추정값들은 신뢰성의 문제가 지적 되어 오고 있다. 본 연구에서는 공간자료의 상관성을 고려한 모형을 구축하기 위하여 일변량 조건부자기회귀모형을 이용하였으며 베이지안 기법을 통하여 모수를 추정하고 공간상관성이 고려된 공간 가산자료모형과 고려되지 않은 일반 가산자료모형을 비교하였다. 연구 대상으로는 서울시의 25개 행정자치구별 총범죄 자료를 이용하였으며 자료분석을 통하여 도시계획과 같은 국가 정책의 수립에 참고자료로 활용될 수 있으리라 판단된다.

Keywords

References

  1. 윤성도 (2004). 이산종속변인의 분석을 위한 공간계량경제모형: 베이지안 접근방법과 깁스 표본추출 방법을 응용하여, 대학원생우수논문집. 통계개발원.
  2. 이성우 (2004). <서울시 범죄발생의 도시계회적 함의>, 서울시정개발연구원.
  3. 이성우, 조중구 (2006). 공간적, 환경적 요인이 범죄 피해에 미치는 영향, <서울도시 연구>, 7, 57-76.
  4. Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle, In B. Petrox and F. Caski (Eds.), Second International Symposium on Information Theory, 267-281.
  5. Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems(with discussions), Journal of the Royal Statistical Society, Series B, 36, 192-236.
  6. Carlin, B. P. and Banerjee, S. (2003). Hierarchical multivariate CAR models for spatio-temporally correlated survival data (with discussion). In Bayesian Statistics 7, eds. J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith and M. West. Oxford Univeristy Press, Oxford.
  7. Consul, P. (1989). Generalized Poisson Distributions. Properties and Applications, Marcel Dekker, Inc., New York.
  8. Consul, P. and Jain, G. (1973). A generalization of the poisson distributions, Technometrics, 15, 791-799. https://doi.org/10.2307/1267389
  9. Griffith, D. (1996). Spatial autocorrelation and eigenfunctions of the geographic weights matrix accompanying georeferenced data, The Canadian Geographer, 40, 351-367. https://doi.org/10.1111/j.1541-0064.1996.tb00462.x
  10. Heo, T. Y. and Hughes-Oliver, J. (2009). Uncertainty adjustments to determine atmospheric dispersion models, International Journal of Environmental Pollution, In press.
  11. Jin, X., Carlin, B. P. and Banerjee, S. (2005). Generalized hierarchical multivariate CAR models for areal data, Biometrics, 61, 950-961. https://doi.org/10.1111/j.1541-0420.2005.00359.x
  12. Johnson, N. L., Kotz, S. and Kemp, A. W. (1993). Univariate Discrete Distributions. 2nd ed., Wiley, New York.
  13. Sain, S. R. and Cressie, N. (2002). Multivariate lattice models for spatial environmental data, In ASA Proceedings of the Joint Statistical Meetings, 2820-2825, American Statistical Association, Alexandria, VA.
  14. Schwarz, G. (1978). Estimating the dimension of a model, Annals of Statistics, 6, 461-464. https://doi.org/10.1214/aos/1176344136
  15. Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and Van der Linde, A. (2002). Bayesian measures of model complexity and fit, Journal of the Royal Statistical Society, Series B, 64, 583-639. https://doi.org/10.1111/1467-9868.00353

Cited by

  1. A Study on Risk Evaluation of Crime in the Seoul Metropolitan Area based on Poisson Regression Model vol.25, pp.5, 2012, https://doi.org/10.5351/KJAS.2012.25.5.865
  2. On the Geometric Anisotropy Inherent In Spatial Data vol.27, pp.5, 2014, https://doi.org/10.5351/KJAS.2014.27.5.755
  3. A Study on Spatial Prediction of Water Quality Constituents Using Spatial Model vol.30, pp.4, 2014, https://doi.org/10.15681/KSWE.2014.30.4.409