References
- Anderson-Cook, C. M., Borror, C. M. and Montgomery, D. C. (2009). Response surface design evaluation and comparison, Journal of Statistical Planning and Inference, 139, 629-641. https://doi.org/10.1016/j.jspi.2008.04.004
- Giovannitti-Jensen, A. and Myers, R. H. (1989). Graphical assessment of the prediction capability of response surface designs, Technometrics, 31, 159-171. https://doi.org/10.2307/1268814
- Jang, D. and Park, S. (1993). A measure and a graphical method for evaluating slope rotatability in response surface designs, Communications in Statistics-Theory and Methods, 22, 1849-1863. https://doi.org/10.1080/03610929308831120
- Khuri, A. I. (1997). Quantile dispersion graphs for analysis of variance estimates of variance components, Journal of Applied Statistics, 24, 711-722. https://doi.org/10.1080/02664769723440
- Khuri, A. I., Kim, H. J. and Um, Y. (1996). Quantile plots of the prediction variance for response surface designs, Computational Statistics and Data Analysis, 22, 395-407. https://doi.org/10.1016/0167-9473(95)00058-5
- Khuri, A. I. and Lee, J. (1998). A graphical approach for evaluating and comparing designs for nonlinear models, Computational Statistics and Data Analysis, 27, 433-443. https://doi.org/10.1016/S0167-9473(98)00016-4
- Kim, H., Um, Y. and Khuri, A. I. (1996). Quantile plots of the average slope variance for response surface designs, Communications in Statistics-Simulation and Computation, 25, 995-1014. https://doi.org/10.1080/03610919608813355
- Lee, J. and Khuri, A. I. (1999). Graphical technique for comparing designs for random models, Journal of Applied Statistics, 26, 933-947. https://doi.org/10.1080/02664769921945
- Lee, J. and Khuri, A. I. (2000). Quantile dispersion graphs for the comparison of designs for a random two-way model, Journal of Statistical Planning and Inference, 91, 123-137. https://doi.org/10.1016/S0378-3758(00)00135-X
- Mukhopadhyay, S. and Khuri, A. I. (2008). Comparison of designs for multivariate generalized linear models, Journal of Statistical Planning and Inference, 138, 169-183. https://doi.org/10.1016/j.jspi.2007.05.014
- Myers, R. H. and Montgomery, D. C. (2002). Response Surface Methodology: Process and Product Optimization using Designed Experiments, 2nd ed., Wiley, New York.
- Ozol-Godfrey, A., Anderson-Cook, C. M. and Robinson, T. J. (2007). Fraction of design space plots for generalized linear models, Journal of Statistical Planning and Inference, 138, 203-219. https://doi.org/10.1016/j.jspi.2007.05.011
- Robinson, K. S. and Khuri, A. I. (2003). Quantile dispersion graphs for evaluating and comparing designs for logistic regression models, Computational Statistics and Data Analysis, 43, 47-62. https://doi.org/10.1016/S0167-9473(02)00182-2
- Zahran, A., Anderson-Cook, C. M. and Myers, R. H. (2003). Fraction of design space to assess the prediction capability of response surface designs, Journal of Quality Technology, 35, 377-386.
Cited by
- Visualization for Experimental Designs vol.24, pp.5, 2011, https://doi.org/10.5351/KJAS.2011.24.5.893