A Study for Crystal Growth Inhibition of Ettringite by Solution Synthesis Experiment

용액합성실험에 의한 에트린자이트 결정성장억제 연구

  • Lee, Hyo-Min (Department of Geological Environmental Sciences, Pusan National University) ;
  • Hwang, Jin-Yeon (Department of Geological Environmental Sciences, Pusan National University) ;
  • Oh, Ji-Ho (Department of Geological Environmental Sciences, Pusan National University)
  • 이효민 (부산대학교 지질환경과학과) ;
  • 황진연 (부산대학교 지질환경과학과) ;
  • 오지호 (부산대학교 지질환경과학과)
  • Received : 2010.03.02
  • Accepted : 2010.03.22
  • Published : 2010.03.31

Abstract

Ettringite $(Ca_6[Al(OH)_6]_2(SO_4)_3{\cdot}26H_2O)$ is a sulfate mineral that shows a complicate property in concrete. It is often called as "a cancer of concrete" because secondary ettringite formation in hardened concrete often cause expansion and cracking of concrete due to its expansive crystal structure. In the present study, we tested the possibility for crystal growth inhibition of secondary ettringite by crystallization inhibitors that are commercially used for scaling inhibitors in Korea. For the test, we developed a method of ettringite solution synthesis. Three types of crystallization inhibitors were selected and examined the effects On ettringite growth inhibition. The experimental results of ettringite solution synthesis indicated that ettringite was successfully synthesized under condition that the mass balance between calcium hydroxide saturated solution and aluminum sulfate solution was attained. Monosulfate and semisulfate were synthesized when the ratio of $Ca^{2+}$ ions to ${SO_4}^{2+}$ ions was increased. The induction time of ettringite crystallization was less than 2 min. and crystallization was almost completed within an hour. The experimental results of ettringite crystallization inhibition showed that organic PBCT (2-Phosphonobutane-1,2,4-Tricarboxylic Acid) and inorganic SHMP (Sodium Hexametaphosphate) were relatively less effective on ettringite crystallization inhibition under experimental conditions. However, organic HEDP (1-Hydoxyethylidene-1,1-Diphosphonic Acid) effectively prevented ettringite growth with producing amorphous gel phase materials up to inhibitor concentration 0.1 vol.% of aluminum sulfate solution.

에트린자이트(ettringite, $Ca_6[Al(OH)_6]_2(SO_4)_3{\cdot}26H_2O)$는 콘크리트 내에서 특이한 성질을 나타내는 황산염광물이다. 팽윤성 결정구조로 인해 경화된 콘크리트에 이차적으로 생성되면 팽창과 균열을 발생하여 콘크리트 내구성을 저하함으로써, 흔히 콘크리트의 암으로 불려진다. 본 연구에서는 국내에서 상업적으로 스케일링 방지제 혹은 청관제로 활용되고 있는 일부 결정성장억제제를 선택 적용하여, 콘크리트에 유해한 황산염이차 광물인 에트린자이트의 결정성장억제 가능성을 시험하였다. 시험을 위한 에트린자이트 용액합성법을 개발하고, 세 가지 유형의 결정성장억제제들의 에트린자이트 결정성장에 대한 억제 효과를 검토하였다. 에트린자이트의 용액합성시험 결과, 수산화칼슘 포화용액에 대한 황산알루미늄 용액의 양적 균형이 이루어진 상태에서 순수한 에트린자이트가 생성되며, 용액 중 ${SO_4}^{2-}$ 이온에 대해 $Ca^{2+}$ 이온의 비율이 증가함에 따라 모노설페이트(monosulfate) 혹은 세미설페이트(semisulfate)가 생성된다. 용액합성법에 의한 에트린자이트의 결정 생성은 용액들의 반응 시작과 거의 동시에 일어나며 (induction time < 2min.), 반응 시작 1시간 정도 지나면 반응이 거의 완료되는 것으로 나타났다. 결정성장억제제들의 에트린자이트 결정성장억제 효과에 대한 실험결과, 폴리카르복시산염 (Polycarboxylate) 계의 PBCT (2-Phosphonobutane-1,2,4-Tricarboxylic Acid)와 무기인산염 (inorganic phosphate)계의 SHMP (Sodium Hexametaphosphate)는 실험조건에서 상대적으로 에트린자이트 결정성장억제의 효과는 적은 것으로 나타났다. 반면에 유기인산염 (organic phosphate)계의 HEDP (1-Hydoxyethylidene-1, 1-Diphosphonic Acid)는 0.1 vol.% 이상의 농도에서 효과적으로 에트린자이트 및 기타 황산염광물들의 결정성장을 억제하여 비정질의 겔(gel) 상의 물질을 생성하였다.

Keywords

References

  1. 이효민, 황진연 (2003) 에트린자이트/사우마사이트의 형성 및 안정도와 콘크리트 성능저하에 미치는 영향, 한국광물학회지, 16, 75-90.
  2. 이효민, 황진연, 진치섭 (2003) 해안지역 콘크리트의 성능저하 현상과 이에 수반되는 이차광물의 형성 특징, 자원환경지질, 33, 365-374.
  3. 조준현 (2003) 건축재료학. 기문당, 558p.
  4. Alvarez-Ayuso, E. and Nugteren, H.W. (2005) Synthesis of ettringite: a way to deal with the acid wastewater of aluminium anodizing industry. Water research, 39, 65-72. https://doi.org/10.1016/j.watres.2004.07.029
  5. Coveney, P.V. and Humphries, W. (1996) Molecular modelling of the mechanism of action of phosphonate retarders on hydrating cements. Journal of Chemistry Society Faraday Transactions, 92, 831-841. https://doi.org/10.1039/ft9969200831
  6. Coveney, P.V., Davey, R.J., Griffin, J.L.W., and Whiting, A. (1998) Molecular design and testing of organophosphonates for inhibition of crystallization of ettringite and cement hydration. Chemical communication, 1467-1468.
  7. Day, R.L. (1992) The effect of secondary ettringite formation on durability of concrete: A literature analysis. PCA Research and Development Bulletin RD108, 115p.
  8. Diamond, S. (1996) Delayed ettringite formation - processes and problems. Cement and Concrete Composites, 18, 205-215. https://doi.org/10.1016/0958-9465(96)00017-0
  9. Gaze, M.E. and Cramond, N.J. (2002) The formation of thaumasite in a cement: lime, sand mortar exposed to cold magnesium and potassium sulfate solutions. Cement and Concrete Composites, 22, 209-222.
  10. Gougar, M.L.D., Scheetz, B.E., and Roy, D.M. (1996) Ettringite and C-S-H portlandite cement phases for waste ion immobilization: a review. Waste manage. 16, 295-303. https://doi.org/10.1016/S0956-053X(96)00072-4
  11. Hartshorn, S.A., Sharp, J.H., and Swamy, R.N. (2002) The thaumasite form of sulfate attack in Portlandlimestone cement mortars stored in magnesium sulfate solution. Cement and Concrete Composites, 24, 351-359. https://doi.org/10.1016/S0958-9465(01)00087-7
  12. Kosmatka, S.H. and Panarese, W.C. (1990) Design and Control of Concrete Mixtures. Portland Cement Association, Skokie, Illinois, 13ed., 205p.
  13. Lee, H. and Cody, R.D. (2002) Secondary Mineral Formation and Expansion Mechanisms Involved in Concrete Pavement Deterioration. The Journal of Engineering Geology, 12, 95-110.
  14. Lee, H., Cody, R.D., Cody, A.M., and Spry P.G. (2005) The formation of ettringite in Iowa highway concrete deterioration. Cement and Concrete Research, 35, 332-343. https://doi.org/10.1016/j.cemconres.2004.05.029
  15. Metha, P.K. (1969) Morphology of calcium sulphoaluminate hydrate. Journal of the American Ceramic Society, 52, 521-522.
  16. Metha, P.K. (1976) Scanning electron micrographic studies of ettringite formation. Cement and Concrete Research, 6, 169-182. https://doi.org/10.1016/0008-8846(76)90115-0
  17. Metha, P.K. (1983) Mechanism of sulfate attack on Portland cement concrete - another look. Cement and Concrete Research, 13, 401-406. https://doi.org/10.1016/0008-8846(83)90040-6
  18. Pajares, I, Martinez-Ramirez, S., and Blanco-Varela, M.T. (2003) Evolution of ettringite in presence of carbonate, and silicate ions. Cement and Concrete Research, 25, 861-865. https://doi.org/10.1016/S0958-9465(03)00113-6
  19. Perkins, R.B. and Palmer, C.D. (1999) Solubility of ettringite $(Ca_6[Al(OH)_6]_2(SO_4)_3,26H_2O)$ at $25^{circ}C$. Geochim. Cosmochim. Acta., 63, 1969-1980. https://doi.org/10.1016/S0016-7037(99)00078-2
  20. Mindess, S., Young, J.F., and Darwin, D. (2003) Concrete, 2nd Ed. Prentice Hall, Upper Saddle River, 644p.
  21. Taylor, H.F.W. (1990) Cement Chemistry. London, Academic Press Ltd, 475p.
  22. Wolter, S. (1996) Ettringite. Cancer of Concrete. New York, Burgess Publishing Co., 172 p.
  23. Zhang, Q. and Saito, F. (2000) Sonochemical synthesis of ettringite from a powder mixture suspended in water. Powder Technology, 107, 43-47. https://doi.org/10.1016/S0032-5910(99)00086-8
  24. Zhang, M. and Readon, E.J. (2003) Removal of B, Cr, Mo and Se from wastewater by incorporation into hydrocalumite and ettringite. Environ. Sci. and technol., 37, 2947-2952. https://doi.org/10.1021/es020969i