Hydroquinone이 인체 상피세포의 발암화에 미치는 영향

EFFECTS OF HYDROQUINONE ON NEOPLASTIC TRANSFORMATION OF HUMAN EPITHELIAL CELLS IN CULTURE

  • 손정희 (서울위생치과병원) ;
  • 김진수 (경북대학교 치의학전문대학원 구강악안면외과학교실)
  • Sohn, Jung-Hee (Seoul Adventist Dental Hospital) ;
  • Kim, Chin-Soo (Department of oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University)
  • 투고 : 2010.03.30
  • 심사 : 2010.05.06
  • 발행 : 2010.05.31

초록

발암물질로 알려진 Hydroquinone (HQ)은 치과용 합성수지를 구성하는 중요한 성분으로서 지금까지 치과용 재료영역에서 널리 사용되고 있으며 구강 내에서 HQ의 유출이 일어나는 것으로 확인 되었다. 따라서 구강암의 기원이 되는 인체상피세포의 발암화에 HQ가 미치는 영향을 평가하였다. HQ에 의한 인체세포 독성을 평가하기위해 LDH assay를 실시하고 세포 독성이 높지 않은 용량을 실험 용량으로 설정하였다. 인체 세포의 발암화를 평가하기 위해 세포 발암화 지표로서 cell saturation density, soft-agar colony formation 및 cell aggregation의 분석을 사용한 결과 고용량인 50 ${\mu}M$을 제외한 모든 용량에서 발암화 지표의 변화를 나타내지 않아 HQ의 발암력은 매우 낮은 것으로 추정된다. 그러나 발암촉진제인 TPA와 함께 투여 시 발암력의 증가를 보여 주변 환경의 여건에 따라 발암력이 증가할 수 있음을 입증하였다. HQ를 노출 후 세포사멸화를 측정하기 위해 DNA fragmentation변화를 분석한 결과 10 ${\mu}M$부터 50 ${\mu}M$까지 노출 시간 의존형의 증가를 나타내었으며 50 ${\mu}M$과 같은 고용량 농도에서는 노출시간 의존적 세포사멸 효과를 보였다. 따라서 세포 발암화를 일으킨 용량에서 세포사멸도 함께 일어나 HQ에 의한 발암화에 세포사멸이 관여함을 보였다. HQ는 ROS를 생성하였으며 Trolox, NAC와 같은 항산화물에 의한 ROS의 차단 효과와 BSO와 같은 GSH 고갈 유발 물질에 따른 ROS의 급격한 증가는 HQ가 인체세포에서 ROS를 효율적으로 생성함을 입증하는 결과이다. 세포간의 신호전달기작 조절에 중요한 역할을 하는 효소인 protein kinase C (PKC)를 immunoblot으로 분석한 결과 PKC-${\alpha}$의 활성이 증가 된 반면 PKC-${\beta}II$의 영향은 나타나지 않았다. 따라서 특정 이성질체에 대한 특이적인 효소반응이 발암화에 관여할 것으로 추정된다. 본 연구결과 치과용 합성수지 구성성분인 HQ 유출에 따른 인체상피세포의 발암성은 매우 낮은 것으로 추정되나 발암촉진제 등과의 상호작용에 의한 발암성 증가는 HQ의 구강암 발생 평가에 고려되어야 할 사항이다. 따라서 본 연구는 구강암의 예방을 위한 과학적인 접근 방법 및 기반 자료를 제시하였고 치과용 합성수지사용의 적정성에 대한 과학적인 판단을 할 수 있는 근거를 제공 하였다. 또한 본 연구 결과는 새로운 치과용 합성수지 개발의 필요성 및 개선방향을 제시 할 수 있는 근거로 활용될 수 있을 것으로 사료된다.

Components of dental resin-based restorative materials are reported to leach from the filling materials even after polymerization. Hydroquinone (HQ) is one of the major monomers used in the dental resin and is known as a carcinogen. Thus, carcinogenic risk of HQ leaching from the dental resin becomes a public health concern. The present study attempted to examine the carcinogenic potentials of HQ on the human epithelial cell, which is the target cell origin of the most of oral cancers. Cytotoxicity of HQ was observed above 50${\mu}M$ as measured by LDH assay, indicating a relatively low toxicity of this substance in human epithelial cells. The parameters of neoplastic cellular transformation such as cell saturation density, soft agar colony formation and cell aggregation were analyzed to examine the carcinogenic potential of HQ. The study showed that 2-week exposure of HQ showed the tendency of increase in the saturation density and the significant enhancement of soft agar colony formation at the highest dose, 50 ${\mu}M$ only. It is suggested that HQ has a weak potential of carcinogenicity. When cells were treated with HQ and TPA, a well-known tumor promoter, the parameters of neoplastic cellular transformation was significantly increased. This result indicates that the potential risk of carcinogenicity from HQ is largely dependent upon the presence of promoter. Exposure of 50 ${\mu}M$ HQ increased the time-dependent apoptosis as measured by the ELISA kit. This concentration coincides with a dose of neoplastic transformation, indicating a possible link between apoptosis and HQ-induced cellular transformation. Hydroquinone generated Reactive Oxygen Species (ROS) which was evidenced by the treatment of antioxidants such as trolox and N-acetyl cysteine and the GSH depleting agent, BSO. Antioxidants blocked the generation of ROS and the GSH depleting agent, BSO dramatically increased the ROS production. Since HQ is known to increase ROS production thru activation of transcriptional factor such as c-Myb and Pim-1, it is speculated that ROS generation by HQ plays a role in the activation of oncogene, which may lead to neoplastic transformation. In addition, ROS is involved in the alteration of signal transduction, which regulates the apoptosis in many cellular systems. Thus, ROS-mediated apoptosis may be involved in the HQ-induced carcinogenic processes. Protein kinase C (PKC) is known to play pivotal roles in neoplastic transformation of cells and its high expression is often found in a variety of types of tumors including oral cancer. PKC translocation of PKC-${\alpha}$ was observed following HQ exposure. Altered signaling system may also play a role in the transformation process. Taken together, HQ leached from the dental resin does not pose a significant threat as a cancer causing agent, but its carcinogenic potential can be significantly elevated in the presence of promoter. The mechanism of HQ-induced carcinogenesis involved ROS generation, apoptosis and altered signaling pathway. The present study will provide a valuable data to estimate the potential risk of HQ as a carcinogen and understand mechanism of HQ-induced carcinogenesis in human epithelial cells.

키워드

참고문헌

  1. Geurtsen W : Substances released from dental resin composites and glass ionomer cements. Eur J Oral Sci. 106 : 687, 1998. https://doi.org/10.1046/j.0909-8836.1998.eos10602ii04.x
  2. Michelsen VB, Lygre H, Skalevik R et al : Identification of organic eluates from four polymer-based dental filling materials. Eur J Oral Sci. 3 : 263, 2003.
  3. Rogalewicz R, Batko K, Voelkel A : Identification of organic extractables from commercial resin-modified glassionomers using HPLC-MS. J Environ Monit. 7 : 750, 2006.
  4. Rogalewicz R, Voelkel A, Kownacki I : Application of HSSPME in the determination of potentially toxic organic compounds emitted from resin-based dental materials. J Environ Monit. 8 : 377, 2006. https://doi.org/10.1039/b517363a
  5. Michelsen VB, Moe G, Skalevik R et al : Quantification of organic eluates from polymerized resin-based dental restorative materials by use of GC/MS. J Chromatogr B Analyt Technol Biomed Life Sci. 850 : 83, 2007. https://doi.org/10.1016/j.jchromb.2006.11.003
  6. McGregor D : Hydroquinone : an evaluation of the human risks its carcinogenic and mutagenic properties. Crit Rev Toxicol. 37 : 887, 2007. https://doi.org/10.1080/10408440701638970
  7. Levay G, Pongracz K, Bodell WJ : Detection of DNA adducts in HL-60 cells treated with hydroquinone and pbenzoquinone by 32P-postlabeling. Carcinogenesis. 12 : 1181, 1991. https://doi.org/10.1093/carcin/12.7.1181
  8. Mattia CJ, Adams JD Jr, Bondy SC : Free radical induction in the brain and liver by products of toluene catabolism. Biochem Pharmacol. 46 : 103, 1993. https://doi.org/10.1016/0006-2952(93)90353-X
  9. Wan J, Winn LM : The effects of benzene and the metabolites phenol and catechol on c-Myb and Pim-1 signaling in HD3 cells. Toxicol Appl Pharmacol. 201 : 194, 2004. https://doi.org/10.1016/j.taap.2004.05.010
  10. Wan J, Badham HJ, Winn L : The role of c-MYB in benzene- initiated toxicity. Chem Biol Interact. 153 : 171, 2005. https://doi.org/10.1016/j.cbi.2005.03.037
  11. Hirabayashi Y, Yoon BI, Li GX et al : Mechanism of benzene- induced hematotoxicity and leukemogenicity : current review with implication of microarray analyses. Toxicol Pathol. 32 : 12, 2004. https://doi.org/10.1080/01926230490451725
  12. Rivedal E, Witz G : Benzene metabolites block gap junction intercellular communication. Role in hematotoxicity and leukemia. Chem Biol Interact. 153 : 257, 2005. https://doi.org/10.1016/j.cbi.2005.03.032
  13. Huff J : Benzene-induced cancers : Abridged history and occupational health impact. Int J Occup Environ Health. 13 : 213, 2007. https://doi.org/10.1179/oeh.2007.13.2.213
  14. Polyzois GL : In vitro evaluation of dental materials. Clin Mater. 16 : 21, 1994. https://doi.org/10.1016/0267-6605(94)90088-4
  15. Theilig C, Tegtmeier Y, Leyhausen G et al : Effects of BisGMA and TEGDMA on proliferation, migration, and tenascin expression of human fibroblasts and keratinocytes. J Biomed Mater Res. 53 : 632, 2000. https://doi.org/10.1002/1097-4636(2000)53:6<632::AID-JBM3>3.0.CO;2-J
  16. Rhim JS, Fujita J, Arnstein P et al : Neoplastic conversion of human epidermal keratinocytes by Ad12-SV40 virus and chemical carcinogens. Science 232 : 385, 1986. https://doi.org/10.1126/science.2421406
  17. Rhim JS : Neoplastic transformation of human epithelial cells in vitro. Anticancer Res. 9 : 1345, 1989.
  18. Voie OA, Fonnum O : Effects of polychlorinated biphenyls on production of reactive oxygen species(ROS) in rat synaptosomes. Arch. Toxicol. 73 : 588, 2000. https://doi.org/10.1007/s002040050012
  19. Yang JH, Vogel C, Abel J : A malignant transformation of human cells by 2,3,7,8-tetrachlorodibenzo-p-dioxin exhibits altered expression of growth regulatory factors. Carcinogenesis 21 : 13, 1999
  20. Farber E : The multiple nature of cancer. Cancer Res. 44 : 4217, 1984.
  21. Eastmond DA, Smith MT, Ruzo LO et al : Metabolic activation of phenol by human myeloperoxidase and horseradish peroxidase. Mol Pharmacol. 6 : 674, 1986.
  22. Marrazzini A, Chelotti L, Barrai I et al : In vivo genotoxic interactions among three phenolic benzene metabolites. Mutat Res. 1 : 29, 1994.
  23. Butterworth BE, Bogdanffy MS : A comprehensive approach to integration of toxicity and cancer risk assessments. Reg. Toxicol. Pharmacol. 29 : 23, 1999. https://doi.org/10.1006/rtph.1998.1273
  24. Nishizuka Y : Protein kinase C and lipid signaling for sustained cellular response. FASEB J. 9 : 484, 1995. https://doi.org/10.1096/fasebj.9.7.7737456
  25. Sun C, Zong Z, Wang Y et al : Expressions of five protein kinase C isoforms in salivary adenoid cystic carcinoma. Hua Xi Kou Qiang yi Xue Za Zhi. 18 : 237, 2000.
  26. Martinez-Gimeno C, Diaz-Meco MT, Dominguez I et al : Alterations in levels of different protein kinase C isotypes and their influence on behavior of squamous cell carcinoma of the oral cavity : Epsilon PKC, a novel prognostic factor for relapse and survival. Head Neck. 17 : 516, 1995. https://doi.org/10.1002/hed.2880170609
  27. Khun K, Shikhman AR, Lotz M : Role of nitric oxide, reactive oxygen species, and p38 MAP kinase in the regulation of human chondrocyte apoptosis. J Cell Physiol. 197 : 379, 2003 https://doi.org/10.1002/jcp.10372
  28. Atsumi T, Tonosaki K, Fujisawa S : Induction of early apoptosis and ROS-generation activity in human gingival fibroblasts (HGF) and human submandibular gland carcinoma (HSG) cells treated with curcumin. Arch Oral Biol 51 : 913, 2006 https://doi.org/10.1016/j.archoralbio.2006.03.016