DOI QR코드

DOI QR Code

Axial compressive behaviour of stub concrete-filled columns with elliptical stainless steel hollow sections

  • Dai, X. (School of Engineering Design and Technology, University of Bradford) ;
  • Lam, D. (School of Engineering Design and Technology, University of Bradford)
  • Received : 2010.06.22
  • Accepted : 2010.11.02
  • Published : 2010.11.25

Abstract

This paper presents the axial compressive behaviour of stub concrete-filled columns with elliptical stainless steel and carbon steel hollow sections. The finite element method developed via ABAQUS/Standard solver was used to carry out the simulations. The accuracy of the FE modelling and the proposed confined concrete stress-strain model were verified against experimental results. A parametric study on stub concrete-filled columns with various elliptical hollow sections made with stainless steel and carbon steel was conducted. The comparisons and analyses presented in this paper outline the effect of hollow sectional configurations to the axial compressive behaviour of elliptical concrete-filled steel tubular columns, especially the merits of using stainless steel hollow sections is highlighted.

Keywords

References

  1. ACI 318-95(1999), Building code requirements for structural concrete and commentary, Detroit (USA), American Concrete Institute.
  2. Chan T.M. and Gardner L. (2008a), "Bending strength of hot-rolled elliptical hollow sections", J. Constr. Steel Res., 64(9), 971-986. https://doi.org/10.1016/j.jcsr.2007.11.001
  3. Chan T.M. and Gardner L. (2008b), "Compressive resistance of hot-rolled elliptical hollow section", Eng. Struct., 30(2), 522-532. https://doi.org/10.1016/j.engstruct.2007.04.019
  4. Chan T.M. and Gardner L. (2009), "Flexural Buckling of Elliptical Hollow Section Columns", J. Struct. Eng-ASCE , 135(5), 546-557. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000005
  5. CEN(2006), BS EN 1993-1-4: 2006, Eurocode 3: Design of steel structures: Part 1-4: General rules- Supplementary rules for stainless steels, Committee of European Normalisation, British Standards Institution, London.
  6. Dabaon, M., El-Khoriby S., El-Boghdadi, M. and Hassanein, M. F. (2009),"Confinement effect of stiffened and unstiffened concrete-filled stainless steel tubular stub columns", J. Const. Steel, Res., 65(8-9), 1846-1854. https://doi.org/10.1016/j.jcsr.2009.04.012
  7. Dai, X. and Lam, D. (2010), "Numerical modelling of the axial compressive behaviour of short concrete-filled elliptical steel columns", J. Constr. Steel Res., 66(7), 931-942. https://doi.org/10.1016/j.jcsr.2010.02.003
  8. Ellobody, E. and Young, B. (2005), "Structural performance of cold-formed high strength stainless steel columns", J. Constr. Steel Res., 61(12), 1631-1649. https://doi.org/10.1016/j.jcsr.2005.05.001
  9. Ellobody, E. and Young, B. (2006), "Design and behaviour of concrete-filled cold-formed stainless steel tube columns", Eng. Struct., 28(5), 716-728. https://doi.org/10.1016/j.engstruct.2005.09.023
  10. Ellobody, E., Young, B. and Lam, D. (2006), "Behaviour of normal and high strength concrete-filled compact steel tube circular stub columns", J. Constr. Steel Res., 62(7), 706-715. https://doi.org/10.1016/j.jcsr.2005.11.002
  11. EN 10002-1 (2001), Metallic materials - Tensile testing - Part 1: Method of test at ambient temperature, British Standard Institute, UK.
  12. Gardner L. and Chan T.M. (2007), "Cross-section classification of elliptical hollow sections", Steel. Compos. Struct., 7(3), 185-200. https://doi.org/10.12989/scs.2007.7.3.185
  13. Gardner, L., Cruise, R.B., Sok, C.P., Krishnan, K. and Ministro dos Santos J. (2007), "Life cycle costing of metallic structures", Proceedings of the Institution of Civil Engineers-Engineering Sustainability, 160(4), 166-177.
  14. Gardner, L., Talja, A. and Baddoo, N.R. (2006), "Structural design of high strength austenitic stainless steel", Thin. Wall. Struct., 44(5), 517-528. https://doi.org/10.1016/j.tws.2006.04.014
  15. Giakoumelis, G. and Lam, D. (2004), "Axial capacity of circular concrete filled tube columns", J. Constr. Steel Res., 60(7), 1049-1068. https://doi.org/10.1016/j.jcsr.2003.10.001
  16. Gibbons, C. and Scott, D. (1996), "Composite hollow steel tubular columns filled with high strength concrete", Proceedings international conference on advances in steel structures, 467-476.
  17. Han, L.H. (2002), "Tests on stub columns of concrete-filled RHS sections", J. Constr. Steel Res., 58(3), 353-372 https://doi.org/10.1016/S0143-974X(01)00059-1
  18. Han, L.H. and Yang, Y. (2001), "Influence of concrete compaction on the behaviour of concrete filled steel tubes with rectangular sections", Adv. Struct. Eng., 4(2), 93-108. https://doi.org/10.1260/1369433011502381
  19. Han, L.H. and Yao, G.H. (2003), "Influence of concrete compaction on the strength of concrete filled steel RHS columns", J. Const. Steel Res., 59(6), 751-767. https://doi.org/10.1016/S0143-974X(02)00076-7
  20. Han, L.H. and Yao, G.H. (2004), "Experimental behaviour of thin walled hollow structural steel (HSS) columns filled with self consolidating concrete (SCC)", Thin. Wall. Struct., 42(9), 1357-1377. https://doi.org/10.1016/j.tws.2004.03.016
  21. Hu, H.T. and Schnobrich, W.C. (1989), "Constitutive modelling of concrete by using non-associated plasticity", J. Mater. Civil. Eng., 1(4), 199-216. https://doi.org/10.1061/(ASCE)0899-1561(1989)1:4(199)
  22. Hu, H.T., Huang, C.S., Wu, M.H. and Wu, Y.M. (2003), "Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect", J. Struct. Eng-ASCE, 129(10), 1322-1329. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:10(1322)
  23. Lam, D. and Gardner, L. (2008), "Structural design of stainless steel concrete filled columns", J. Constr. Steel Res., 64(11), 1275-1282. https://doi.org/10.1016/j.jcsr.2008.04.012
  24. Lam, D. and Williams, C.A. (2004), "Experimental study on concrete filled square hollow sections", Steel. Compos. Struct., 4(2), 95-112. https://doi.org/10.12989/scs.2004.4.2.095
  25. Mursi, M. and Uy, B. (2003), "Strength of concrete filled steel box columns incorporating interaction buckling", J. Struct. Eng-ASCE, 129(5), 626-639. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:5(626)
  26. O'Shea, M.D. and Bridge, R.Q. (1997), "The design for local buckling of concrete filled steel tubes", Composite Constructive-Conventional and Inovate, Innsbruck, Austria, 319-324.
  27. O'Shea, M.D. and Bridge, R.Q. (2000), "Design of circular thin-walled concrete filled steel tubes", J. Struct. Eng-ASCE, 126(11), 1295-1303. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:11(1295)
  28. Rangan, B.V. and Joyce, M. (1992), "Strength of eccentrically loaded lender steel tubular columns filled with high strength concrete", ACI Struct. J., 89(6), 676-681.
  29. Richart, F.E. and Brandzaeg, A. and Brown, R.L. (1928), "A study of the failure of concrete under combined compressive stresses", Bull. 185. Champaign (IL, USA), University of Illinois Engineering Experimental Station.
  30. Ruiz-Teran A.M. and Gardner L. (2008), "Elastic buckling of elliptical tubes", Thin. Wall. Struct., 46(11), 1304-1318. https://doi.org/10.1016/j.tws.2008.01.036
  31. Saenz, L.P. (1964), "Discussion of 'Equation for the stress-strain curve of concrete' by P. Desayi, and S. Krishnan", ACI J., 61(9), 1229-1235.
  32. Sakino, K., Tomii, M. and Watanabe, K. (1998), "Sustaining load capacity of plain concrete stub columns by circular steel tubes", Conference on concrete filled steel tubular construction, 112-118.
  33. Schneider, S.P. (1998), "Axially loaded concrete-filled steel tubes", J. Struct. Eng-ASCE, 124(10), 1125-1138. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125)
  34. Theofanous M. Chan T.M. and Gardner L. (2009a), "Flexural behaviour of stainless steel oval hollow sections", Thin. Wall. Struct., 47(6-7), 776-787. https://doi.org/10.1016/j.tws.2009.01.001
  35. Theofanous M., Chan T.M. and Gardner L. (2009b), "Structural response of stainless steel oval hollow section compression members", Eng. Struct., 31(4), 922-934. https://doi.org/10.1016/j.engstruct.2008.12.002
  36. Uy, B. (1998a), "Concrete filled fabricated steel box columns for multi-storey buildings", Prog. Struct. Eng. Mater., 1(2), 150-158. https://doi.org/10.1002/pse.2260010207
  37. Uy, B. (1998b), "Local and post-local buckling of concrete filled steel welded box columns", J. Constr. Steel Res., 47(1-2), 47-72. https://doi.org/10.1016/S0143-974X(98)80102-8
  38. Uy, B. (2001a), "Static long-term effects in short concrete-filled steel box columns under sustained loading", ACI Struct. J., 98(1), 96-104.
  39. Uy, B. (2001b), "Strength of short concrete filled high strength steel box columns", J. Constr. Steel Res., 57(2), 113-134. https://doi.org/10.1016/S0143-974X(00)00014-6
  40. Yang, H., Lam, D. and Gardner, L. (2008), "Testing and analysis of concrete-filled elliptical hollow sections", Eng. Struct., 30(12), 3771-3781. https://doi.org/10.1016/j.engstruct.2008.07.004
  41. Young, B. and Ellobody, E. (2006), "Experimental investigation of concrete-filled cold-formed high strength stainless steel tube columns", J. Constr. Steel. Res., 62(5), 484-492. https://doi.org/10.1016/j.jcsr.2005.08.004
  42. Young, B. and Lui, W.M. (2005), "Behaviour of cold-formed high strength stainless steel sections", J. Struct. Eng-ASCE, 131(11), 1738-1745. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:11(1738)

Cited by

  1. Recycling and reuse of construction and demolition waste in concrete-filled steel tubes: A review vol.126, 2016, https://doi.org/10.1016/j.conbuildmat.2016.09.063
  2. Compressive strength capacity of light gauge steel composite columns vol.5, 2016, https://doi.org/10.1016/j.cscm.2016.08.001
  3. Experimental behaviour of recycled aggregate concrete filled stainless steel tube stub columns and beams vol.66, 2013, https://doi.org/10.1016/j.tws.2013.01.017
  4. Structural response of concrete-filled elliptical steel hollow sections under eccentric compression vol.45, 2012, https://doi.org/10.1016/j.engstruct.2012.06.040
  5. Web crippling strength of cold-formed stainless steel lipped channel-sections with web openings subjected to interior-one-flange loading condition vol.21, pp.3, 2016, https://doi.org/10.12989/scs.2016.21.3.629
  6. Behaviour of inclined, tapered and STS square CFST stub columns subjected to axial load vol.54, 2012, https://doi.org/10.1016/j.tws.2012.02.010
  7. Improving strength, stiffness and ductility of CFDST columns by external confinement vol.75, 2014, https://doi.org/10.1016/j.tws.2013.10.009
  8. Axial Bearing Capacity of Elliptical Concrete Filled Steel Tubular Stub Columns vol.220, 2017, https://doi.org/10.1088/1757-899X/220/1/012002
  9. Efficiency on uni-axial compressive strength improvement by using externally confined concrete-filled steel tube columns vol.20, pp.2, 2013, https://doi.org/10.1080/1023697X.2013.794572
  10. Performance of Steel-Reinforced Concrete-Filled Stainless Steel Tubular Columns at Elevated Temperature pp.1793-6764, 2019, https://doi.org/10.1142/S0219455419400029
  11. Structural behaviour of stainless steel stub column under axial compression: a FE study pp.2093-6311, 2018, https://doi.org/10.1007/s13296-018-0083-1
  12. The structural performance of axially loaded CFST columns under various loading conditions vol.13, pp.5, 2012, https://doi.org/10.12989/scs.2012.13.5.451
  13. Uni-axial behaviour of normal-strength CFDST columns with external steel rings vol.13, pp.6, 2010, https://doi.org/10.12989/scs.2012.13.6.587
  14. Uni-axial behaviour of normal-strength concrete-filled-steel-tube columns with external confinement vol.3, pp.6, 2012, https://doi.org/10.12989/eas.2012.3.6.889
  15. Study on rectangular concrete-filled steel tubes with unequal wall thickness vol.22, pp.5, 2010, https://doi.org/10.12989/scs.2016.22.5.1073
  16. Numerical investigation of web crippling strength in cold-formed stainless steel lipped channels with web openings subjected to interior-two-flange loading condition vol.23, pp.3, 2010, https://doi.org/10.12989/scs.2017.23.3.363
  17. Finite element modelling of back-to-back built-up cold-formed stainless-steel lipped channels under axial compression vol.33, pp.1, 2010, https://doi.org/10.12989/scs.2019.33.1.037
  18. Initial stiffness and moment capacity assessment of stainless steel composite bolted joints with concrete-filled circular tubular columns vol.33, pp.5, 2010, https://doi.org/10.12989/scs.2019.33.5.681
  19. Cyclic behaviour and modelling of stainless-clad bimetallic steels with various clad ratios vol.34, pp.2, 2010, https://doi.org/10.12989/scs.2020.34.2.189
  20. Finite element modelling and proposed design rules of stainless steel hybrid tubular joints with square braces and circular chord vol.179, pp.None, 2010, https://doi.org/10.1016/j.jcsr.2021.106557
  21. Tensile behavior of stainless steel S30408 at the Arctic low temperature vol.40, pp.5, 2010, https://doi.org/10.12989/scs.2021.40.5.633
  22. Axial capacity of back-to-back built-up cold-formed stainless steel unlipped channels-Numerical investigation and parametric study vol.40, pp.5, 2010, https://doi.org/10.12989/scs.2021.40.5.761